Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Immunotherapy

Remission of acute myeloid leukemia with t(8;21) following CD19 CAR T-cells

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular detection of t(8;21) in the bone marrow.

References

  1. Dombret Hervé, Claude Gardin. An update of current treatments for adult acute myeloid leukemia. Blood 2016;127:53–62.

    Article  CAS  Google Scholar 

  2. Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev 2019;290:39–59.

    Article  CAS  Google Scholar 

  3. Tasian SK. Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled? Ther Adv Hematol. 2018;9:135–48. https://doi.org/10.1177/2040620718774268.

  4. Kita K, Nakase K, Miwa H, Masuya M, Nishii K, Morita N, et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood. 1992;80:470–7

  5. Ma G, Wang Y, Ahmed T, Zaslav AL, Hogan L, Avila C, et al. Anti-CD19 chimeric antigen receptor targeting of CD19+ acute myeloid leukemia. Leuk Res Rep 2018;9:42–4.

    PubMed  PubMed Central  Google Scholar 

  6. Jacoby E, Bielorai B, Avigdor A, Itzhaki O, Hutt D, Nussboim V, et al. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am J Hematol. 2018;93:1485–92.

    Article  CAS  Google Scholar 

  7. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transpl. 2019;25:625–38.

    Article  CAS  Google Scholar 

  8. Jacoby E, Yang Y, Qin H, Chien CD, Kochenderfer JN, Fry TJ. Murine allogeneic CD19 CAR T-cells harbor potent anti-leukemic activity but have the potential to mediate lethal GVHD. Blood 2016;127:1361–70.

    Article  CAS  Google Scholar 

  9. Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med 2017;23:242–9.

    Article  CAS  Google Scholar 

  10. Cordeiro A, Bezerra ED, Hirayama AV, Hill JA, Wu V, Voutsinas J, et al. Late events after treatment with CD19-targeted chimeric antigen receptor modified T-cells. Biol Blood Marrow Transplant. 2020;26:26–33. https://doi.org/10.1016/j.bbmt.2019.08.003.

  11. Perna F, Berman SH, Soni RK, Hendrickson RC, Brennan CW, Sadelain M. Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML article integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 2017;32:506–19.e5.

    Article  CAS  Google Scholar 

  12. Kim MY, Yu KR, Kenderian SS, Ruella M, Chen S, Shin TH, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 2018;173:1439–53.e19.

    Article  CAS  Google Scholar 

  13. Cohen AD, Ayers EC, Kerr NDS, Wang Q, Melenhorst JJ, Hwang W-T, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight. 2018;3.pii: 120505. https://doi.org/10.1172/jci.insight.120505.

  14. Nerreter T, Letschert S, Götz R, Doose S, Danhof S, Einsele H, et al. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun 2019;10:3137.

    Article  Google Scholar 

  15. Svoboda J, Rheingold SR, Gill SI, Grupp SA, Lacey SF, Kulikovskaya I, et al. Non-viral RNA chimeric antigen receptor modified T cells in patients with Hodgkin lymphoma. Blood. 2018;132:blood-2018-03-837609.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Data collection: ID, EJ, MJB, HV, VM-M, AA, and AN; Patient care: ID, RY, NS-T, AS, AA, AN. Analysis and interpretation of data: ID, EJ, HV, VM-M, AA, and AN. Drafting the manuscript: ID, EJ, and AN. All authors approved the manuscript.

Corresponding author

Correspondence to Arnon Nagler.

Ethics declarations

Conflict of interest

EJ received honoraria in from Novartis. All other authors report no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danylesko, I., Jacoby, E., Yerushalmi, R. et al. Remission of acute myeloid leukemia with t(8;21) following CD19 CAR T-cells. Leukemia 34, 1939–1942 (2020). https://doi.org/10.1038/s41375-020-0719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0719-y

This article is cited by

Search

Quick links