Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell transplantation

Leptin receptor, a surface marker for a subset of highly engrafting long-term functional hematopoietic stem cells

Abstract

The hematopoietic system is sustained by a rare population of hematopoietic stem cells (HSCs), which emerge during early embryonic development and then reside in the hypoxic niche of the adult bone marrow microenvironment. Although leptin receptor (Lepr)-expressing stromal cells are well-studied as critical regulators of murine hematopoiesis, the biological implications of Lepr expression on HSCs remain largely unexplored. We hypothesized that Lepr+HSCs are functionally different from other HSCs. Using in vitro and in vivo experimental approaches, we demonstrated that Lepr further differentiates SLAM HSCs into two distinct populations; Lepr+HSCs engrafted better than LeprHSCs in primary transplant. Compared to LeprLSK cells, Lepr+LSK cells were highly enriched for extensively repopulating and self-renewing HSCs. Molecularly, Lepr+HSCs were characterized by a pro-inflammatory transcriptomic profile enriched for Type-I Interferon and Interferon-gamma (IFN-γ) response pathways, which are known to be critical for the emergence of HSCs in the embryo. We conclude that although Lepr+HSCs represent a minor subset of HSCs, they are highly engrafting cells that possess embryonic-like transcriptomic characteristics, and that Lepr can serve as a reliable marker for functional long-term HSCs, which may have potential clinical applicability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lepr+ LSK cells are significantly enriched for phenotypically-defined HSCs, but Lepr+HSCs represent a minor subset out of the total HSC population.
Fig. 2: Compared to LeprLSK cells, Lepr+LSK cells contained significantly higher numbers of both colony-forming progenitor cells and functional long-term self-renewing HSCs.
Fig. 3: Lepr+HSCs exhibited more robust repopulating capacity, but showed similar lineage output and homing capacity compared to LeprHSCs.
Fig. 4: Lepr+HSCs constitute a subset of functional long-term repopulating HSCs that is characterized by a pro-inflammatory transcriptomic signature.
Fig. 5: Human CB LEPR+CD34+ cells, a minor subset of total CD34+ cells, are more highly enriched for phenotypically-defined HSCs and MPPs but have fewer colony-forming progenitor cells.
Fig. 6: LEPR+CD34+ cells show a trend to enhanced engraftment compared to LEPRCD34+ cell in NSG mice.

Similar content being viewed by others

References

  1. Kohli L, Passegue E. Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol. 2014;24:479–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mantel CR, O’Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 2015;161:1553–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.

    CAS  PubMed  Google Scholar 

  5. Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal. 2014;21:1605–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110:3056–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 2018;22:157–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    CAS  PubMed  Google Scholar 

  9. La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004;4:371–9.

    PubMed  Google Scholar 

  10. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996;379:632–5.

    CAS  PubMed  Google Scholar 

  11. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.

    CAS  PubMed  Google Scholar 

  12. Bahary N, Leibel RL, Joseph L, Friedman JM. Molecular mapping of the mouse db mutation. Proc Natl Acad Sci USA. 1990;87:8642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15:154–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett BD, Solar GP, Yuan JQ, Mathias J, Thomas GR, Matthews W. A role for leptin and its cognate receptor in hematopoiesis. Curr Biol. 1996;6:1170–80.

    CAS  PubMed  Google Scholar 

  15. Cioffi JA, Shafer AW, Zupancic TJ, Smith-Gbur J, Mikhail A, Platika D, et al. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med. 1996;2:585–9.

    CAS  PubMed  Google Scholar 

  16. Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ng A, et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA. 1996;93:14564–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Umemoto Y, Tsuji K, Yang FC, Ebihara Y, Kaneko A, Furukawa S, et al. Leptin stimulates the proliferation of murine myelocytic and primitive hematopoietic progenitor cells. Blood. 1997;90:3438–43.

    CAS  PubMed  Google Scholar 

  18. Claycombe K, King LE, Fraker PJ. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci USA. 2008;105:2017–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19:891–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Himburg HA, Termini CM, Schlussel L, Kan J, Li M, Zhao L, et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell. 2018;23:370–81.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell. 2019;24:477–86.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Galvin A, Weglarz M, Folz-Donahue K, Handley M, Baum M, Mazzola M, et al. Cell cycle analysis of hematopoietic stem and progenitor cells by multicolor flow cytometry. Curr Protoc Cytom. 2019;87:e50.

    PubMed  Google Scholar 

  24. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med. 2014;211:245–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Broxmeyer HE, Hoggatt J, O’Leary HA, Mantel C, Chitteti BR, Cooper S, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18:1786–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y, Yao C, Teng Y, Jiang R, Huang X, Liu S, et al. Phorbol ester induced ex vivo expansion of rigorously-defined phenotypic but not functional human cord blood hematopoietic stem cells: a cautionary tale demonstrating that phenotype does not always recapitulate stem cell function. Leukemia. 2019;33:2962–6.

    PubMed  PubMed Central  Google Scholar 

  27. Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD, et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015;17:35–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10:120–36.

    CAS  PubMed  Google Scholar 

  29. Naylor C, Petri WA Jr. Leptin regulation of immune responses. Trends Mol Med. 2016;22:88–98.

    CAS  PubMed  Google Scholar 

  30. Sawamiphak S, Kontarakis Z, Stainier DY. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev Cell. 2014;31:640–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Espin-Palazon R, Traver D. The NF-kappaB family: key players during embryonic development and HSC emergence. Exp Hematol. 2016;44:519–27.

    CAS  PubMed  Google Scholar 

  32. Zhao C, Xiu Y, Ashton J, Xing L, Morita Y, Jordan CT, et al. Noncanonical NF-kappaB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells. 2012;30:709–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Espin-Palazon R, Stachura DL, Campbell CA, Garcia-Moreno D, Del Cid N, Kim AD, et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell. 2014;159:1070–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stein SJ, Baldwin AS. Deletion of the NF-kappaB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood. 2013;121:5015–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayani H, Wagner JE, Broxmeyer HE. Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplant. 2020;55:48–61.

    PubMed  Google Scholar 

  36. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122:491–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Talib S, Shepard KA. Unleashing the cure: overcoming persistent obstacles in the translation and expanded use of hematopoietic stem cell-based therapies. Stem Cells Transl Med. 2020;9:420–6.

    PubMed  PubMed Central  Google Scholar 

  38. Nakao T, Hino M, Yamane T, Nishizawa Y, Morii H, Tatsumi N. Expression of the leptin receptor in human leukaemic blast cells. Br J Haematol. 1998;102:740–5.

    CAS  PubMed  Google Scholar 

  39. Lu Z, Xie J, Wu G, Shen J, Collins R, Chen W, et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat Med. 2017;23:79–90.

    CAS  PubMed  Google Scholar 

  40. Konopleva M, Mikhail A, Estrov Z, Zhao S, Harris D, Sanchez-Williams G, et al. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: proliferative and anti-apoptotic activities. Blood. 1999;93:1668–76.

    CAS  PubMed  Google Scholar 

  41. Ozturk K, Avcu F, Ural AU. Aberrant expressions of leptin and adiponectin receptor isoforms in chronic myeloid leukemia patients. Cytokine. 2012;57:61–7.

    CAS  PubMed  Google Scholar 

  42. Gorska E, Popko K, Wasik M. Leptin receptor in childhood acute leukemias. Adv Exp Med Biol. 2013;756:155–61.

    CAS  PubMed  Google Scholar 

  43. Park HY, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33:95–102.

    CAS  PubMed  Google Scholar 

  44. Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281:1683–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by US Public Health Service grants from the National Institutes of Health to HEB: R35 HL139599, R01 DK109188, T32 DK007519, the IU Simon Comprehensive Cancer Center Support Grant P30CA082709 and U54 DK106846 (to HEB and EFS). TT, JR, and AA were supported by Training grant T32 DK007519.

Author information

Authors and Affiliations

Authors

Contributions

TT, EFS, and HEB designed experiments and interpreted data. TT, AA, AS, SC, and HEB performed experiments. TT and JR analyzed data. TT, JR, and HEB wrote the paper.

Corresponding author

Correspondence to Hal E. Broxmeyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal studies were approved by the Indiana University Committees on Use and Care of Animals. All CB studies were approved by the Indiana University Institutional Review Board.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, T., Ropa, J., Aljoufi, A. et al. Leptin receptor, a surface marker for a subset of highly engrafting long-term functional hematopoietic stem cells. Leukemia 35, 2064–2075 (2021). https://doi.org/10.1038/s41375-020-01079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-01079-z

This article is cited by

Search

Quick links