Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple myeloma gammopathies

ADARs, RNA editing and more in hematological malignancies

Abstract

Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in humans, mediated by the adenosine deaminases acting on RNA (ADARs). Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they catalyze the conversion of adenosines (A) to inosines (I) on double-stranded mRNA molecules. Aberrant ADAR-mediated-editing is a prominent feature in a variety of cancers. Importantly, the biological functions of ADARs and its functional implications in hematological malignancies have recently been unraveled. In this review, we will highlight the functions of ADARs and their involvements in cancer, specifically in hematological malignancies. RNA editingā€independent function of cellular processes by ADARs and the potential of developing novel therapeutic approaches revolving RNA editing will also be discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ADAR (Adenosine deaminase acting on RNA) family of editases.
Fig. 2: Overview of the functional consequences of ADAR-mediated A-to-I RNA editing.
Fig. 3: RNA editing-independent functions of ADARs.

Similar content being viewed by others

References

  1. Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002;30:1427ā€“64.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Benne R, Van Den Burg J, Brakenhoff JPJ, Sloof P, Van Boom JH, Tromp MC. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819ā€“26.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321ā€“49.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Valente L, Nishikura K. ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol. 2005;79:299ā€“338.

  5. Paz-Yaacov N, Levanon EY, Nevo E, Kinar Y, Harmelin A, Jacob-Hirsch J, et al. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci. 2010;107:12174.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Mannion Niamh M, Greenwood SM, Young R, Cox S, Brindle J, Read D, et al. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA. Cell Rep. 2014;9:1482ā€“94.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. Isoforms of RNA-Editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity. 2015;43:933ā€“44.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Roth SH, Danan-Gotthold M, Ben-Izhak M, Rechavi G, Cohen CJ, Louzoun Y, et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep. 2018;23:50ā€“7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Hwang T, Park C-K, Leung AKL, Gao Y, Hyde TM, Kleinman JE, et al. Dynamic regulation of RNA editing in human brain development and disease. Nat Neurosci. 2016;19:1093ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Paz-Yaacov N, Bazak L, Buchumenski I, Porath Hagit T, Danan-Gotthold M, Knisbacher Binyamin A, et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep. 2015;13:267ā€“76.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Xu X, Wang Y, Liang H. The role of A-to-I RNA editing in cancer development. Curr Opin Genet Dev. 2018;48:51ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24:365ā€“76.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, et al. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet. 2000;9:2297ā€“304.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Fumagalli D, Gacquer D, RothĆ© F, Lefort A, Libert F, Brown D, et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 2015;13:277ā€“89.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Chen L, Li Y, Lin CH, Chan THM, Chow RKK, Song Y, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat Med. 2013;19:209ā€“16.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Qin Y-R, Qiao J-J, Chan THM, Zhu Y-H, Li F-F, Liu H, et al. Adenosine-to-Inosine RNA editing mediated by ADARs in esophageal squamous cell carcinoma. Cancer Res. 2014;74:840.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Hong H, Lin JS, Chen L. Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing. Biosci Rep. 2015;35:e00182.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17:83ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Kung C-P, Maggi LB, Weber JD. The role of RNA editing in cancer development and metabolic disorders. Front Endocrinol. 2018;9:762.

    Google ScholarĀ 

  20. Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med. 2019;17:319.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Wang IX, So E, Devlin JL, Zhao Y, Wu M, Cheung VG. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep. 2013;5:849ā€“60.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6:755ā€“67.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci USA. 1994;91:11457ā€“61.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379:460ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 1996;271:31795ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Han L, Diao L, Yu S, Xu X, Li J, Zhang R, et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell. 2015;28:515ā€“28.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. George CX, Samuel CE. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci USA. 1999;96:4621ā€“6.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Herbert A, Alfken J, Kim Y-G, Mian IS, Nishikura K, Rich A. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci. 1997;94:8421ā€“6.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Barraud P, Allain FHT. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol. 2012;353:35ā€“60.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Maas S, Gommans WM. Novel exon of mammalian ADAR2 extends open reading frame. PLoS ONE. 2009;4:e4225.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Desterro JMP, Keegan LP, Lafarga M, Berciano MT, Connell M, Carmo-Fonseca M. Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci. 2003;116:1805.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Fritz J, Strehblow A, Taschner A, Schopoff S, Pasierbek P, Jantsch MF. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol. 2009;29:1487ā€“97.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol. 2001;21:7862.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ɩhman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745.

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Marcucci R, Brindle J, Paro S, Casadio A, Hempel S, Morrice N, et al. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J. 2011;30:4211ā€“22.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Maas S, Gommans WM. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res. 2009;37:5822ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, Oā€™Connell MA, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods. 2013;10:128ā€“32.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Yang C-C, Chen Y-T, Chang Y-F, Liu H, Kuo Y-P, Shih C-T, et al. ADAR1-mediated 3ā€²UTR editing and expression control of antiapoptosis genes fine-tunes cellular apoptosis response. Cell Death Dis. 2017;8:e2833ā€“e.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Higuchi M, Single FN, Kƶhler M, Sommer B, Sprengel R, Seeburg PH. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993;75:1361ā€“70.

    CASĀ  PubMedĀ  Google ScholarĀ 

  40. Rosenthal JJC, Seeburg PH. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron. 2012;74:432ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Daniel C, Wahlstedt H, Ohlson J, Bjƶrk P, Ohman M. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type A (GABA(A)) receptor. J Biol Chem. 2011;286:2031ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF, et al. Regulating gene expression through RNA nuclear retention. Cell. 2005;123:249ā€“63.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Hundley HA, Krauchuk AA, Bass BL. C. elegans and H. sapiens mRNAs with edited 3ā€²UTRs are present on polysomes. RNA. 2008;14:2050ā€“60.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Liang H, Landweber LF. Hypothesis: RNA editing of microRNA target sites in humans? RNA. 2007;13:463ā€“7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S, Brummelkamp TR, et al. GPR107, a G-protein-coupled receptor essential for intoxication by pseudomonas aeruginosa exotoxin A, localizes to the golgi and is cleaved by furin. J Biol Chem. 2014;289:24005ā€“18.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G. RNA-editing-mediated exon evolution. Genome Biol. 2007;8:R29.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Barton RM, Worman HJ. Prenylated Prelamin A interacts with Narf, a novel nuclear protein. J Biol Chem. 1999;274:30008ā€“18.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 2006;13:13ā€“21.

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Scadden ADJ. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol. 2005;12:489ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315:1137.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Bhartiya D, Scaria V. Genomic variations in non-coding RNAs: structure, function and regulation. Genomics. 2016;107:59ā€“68.

    CASĀ  PubMedĀ  Google ScholarĀ 

  52. Gong J, Liu C, Liu W, Xiang Y, Diao L, Guo A-Y, et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Res. 2017;45:D79ā€“84.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Galeano F, Tomaselli S, Locatelli F, Gallo A. A-to-I RNA editing: The ā€œADARā€ side of human cancer. Semin Cell Developmental Biol. 2012;23:244ā€“50.

    CASĀ  Google ScholarĀ 

  54. Lazzari E, Mondala PK, Santos ND, Miller AC, Pineda G, Jiang Q, et al. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat Commun. 2017;8:1922.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Teoh PJ, An O, Chung T-H, Chooi JY, Toh SHM, Fan S, et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood. 2018;132:1304ā€“17.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. Jiang Q, Crews LA, Barrett CL, Chun H-J, Court AC, Isquith JM, et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2013;110:1041ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Abrahamsson AE, Geron I, Gotlib J, Dao K-HT, Barroga CF, Newton IG, et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 2009;106:3925ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Zipeto MA, Court AC, Sadarangani A, Delos Santos NP, Balaian L, Chun H-J, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell. 2016;19:177ā€“91.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Jiang Q, Isquith J, Zipeto MA, Diep RH, Pham J, Delos Santos N, et al. Hyper-editing of cell-cycle regulatory and tumor suppressor RNA promotes malignant progenitor propagation. Cancer Cell. 2019;35:81ā€“94.e7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Gassner FJ, Zaborsky N, Feldbacher D, Greil R, Geisberger R. RNA editing alters mirna function in chronic lymphocytic leukemia. Cancers. 2020;12:1159.

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  61. Wang F, Wang X-S, Yang G-H, Zhai P-F, Xiao Z, Xia L-Y, et al. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 2012;39:2713ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Dong Q, Siminovitch KA, Fialkow L, Fukushima T, Downey GP. Negative regulation of myeloid cell proliferation and function by the SH2 domain-containing tyrosine phosphatase-1. J Immunol. 1999;162:3220.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Bahn JH, Ahn J, Lin X, Zhang Q, Lee J-H, Civelek M, et al. Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways. Nat Commun. 2015;6:6355.

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Ota H, Sakurai M, Gupta R, Valente L, Wulff B-E, Ariyoshi K, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell. 2013;153:575ā€“89.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Cho DS, Yang W, Lee JT, Shiekhattar R, Murray JM, Nishikura K. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J Biol Chem. 2003;278:17093ā€“102.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Allegra D, Bilan V, Garding A, Dƶhner H, Stilgenbauer S, Kuchenbauer F, et al. Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia. 2014;28:98ā€“107.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Kim YK, Furic L, DesGroseillers L, Maquat LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3ā€²UTRs so as to Elicit mRNA Decay. Cell. 2005;120:195ā€“208.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Sakurai M, Shiromoto Y, Ota H, Song C, Kossenkov AV, Wickramasinghe J, et al. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat Struct Mol Biol. 2017;24:534ā€“43.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Anantharaman A, Tripathi V, Khan A, Yoon J-H, Singh DK, Gholamalamdari O, et al. ADAR2 regulates RNA stability by modifying access of decay-promoting RNA-binding proteins. Nucleic Acids Res. 2017;45:4189ā€“201.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016;16:566ā€“80.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Dias Junior AG, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27:75ā€“85.

    CASĀ  PubMedĀ  Google ScholarĀ 

  72. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Dar AC, Dever TE, Sicheri F. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell. 2005;122:887ā€“900.

    CASĀ  PubMedĀ  Google ScholarĀ 

  74. Dong B, Silverman RH. 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem. 1995;270:4133ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  75. Lamers MM, van den Hoogen BG, Haagmans BL. ADAR1: ā€œEditor-in-Chiefā€ of Cytoplasmic Innate Immunity. Front Immunol. 2019;10:1763.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A, et al. Aicardi-GoutiĆØres syndrome is caused by IFIH1 mutations. Am J Hum Genet. 2014;95:121ā€“5.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem. 2019;294:1710ā€“20.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115ā€“20.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  80. Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  81. Gannon HS, Zou T, Kiessling MK, Gao GF, Cai D, Choi PS, et al. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat Commun. 2018;9:5450.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Zhang M, Fritsche J, Roszik J, Williams LJ, Peng X, Chiu Y, et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat Commun. 2018;9:3919.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Bachireddy P, Burkhardt UE, Rajasagi M, Wu CJ. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer. 2015;15:201ā€“15.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Prim. 2017;3:17046.

    PubMedĀ  Google ScholarĀ 

  85. Soekojo CY, Ooi M, de Mel S, Chng WJ. Immunotherapy in multiple myeloma. Cells. 2020;9:601.

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Chigaev M, Yu H, Samuels DC, Sheng Q, Oyebamiji O, Ness S, et al. Genomic positional dissection of RNA editomes in tumor and normal samples. Front Genet. 2019;10:211.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Roth SH, Levanon EY, Eisenberg E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods. 2019;16:1131ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  88. Xu G, Zhang J. Human coding RNA editing is generally nonadaptive. Proc Natl Acad Sci USA. 2014;111:3769ā€“74.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2012;22:142ā€“50.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. RamĆ³n y Cajal S, Segura MF, HĆ¼mmer S. Interplay between ncRNAs and cellular communication: a proposal for understanding cell-specific signaling pathways. Front Genet. 2019;10:281.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Teoh PJ, Chung T-H, Chng PYZ, Toh SHM, Chng WJ. IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification. Haematologica. 2020;105:1391.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  92. Chen Y-B, Liao X-Y, Zhang J-B, Wang F, Qin H-D, Zhang L, et al. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. Int J Oncol. 2017;50:622ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  93. Chan THM, Lin CH, Qi L, Fei J, Li Y, Yong KJ, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut. 2014;63:832ā€“43.

    CASĀ  PubMedĀ  Google ScholarĀ 

  94. Chan THM, Qamra A, Tan KT, Guo J, Yang H, Qi L, et al. ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology. 2016;151:637ā€“50.e10.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Chilibeck KA, Wu T, Liang C, Schellenberg MJ, Gesner EM, Lynch JM, et al. FRET analysis of in vivo dimerization by RNA-editing enzymes. J Biol Chem. 2006;281:16530ā€“5.

    CASĀ  PubMedĀ  Google ScholarĀ 

  96. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17:1586ā€“95.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. VĆ©liz EA, Easterwood LM, Beal PA. Substrate analogues for an RNA-editing adenosine deaminase: mechanistic investigation and inhibitor design. J Am Chem Soc. 2003;125:10867ā€“76.

    PubMedĀ  Google ScholarĀ 

  98. Mizrahi RA, Phelps KJ, Ching AY, Beal PA. Nucleoside analog studies indicate mechanistic differences between RNA-editing adenosine deaminases. Nucleic Acids Res. 2012;40:9825ā€“35.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  99. RamĆ­rez-Moya J, Baker AR, Slack FJ, Santisteban P. ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity. Oncogene. 2020;39:3738ā€“53.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  100. Granier C, Soumelis V, Mandavit M, Gibault L, Belazzoug R, de Guillebon E, et al. [The ā€œimmune checkpointsā€, how does it work]. Ann Pathol. 2017;37:18ā€“28.

    PubMedĀ  Google ScholarĀ 

  101. Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, et al. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol. 2020;31:724ā€“44.

    CASĀ  PubMedĀ  Google ScholarĀ 

  102. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50:1ā€“11.

    PubMedĀ  Google ScholarĀ 

  103. Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226:365ā€“79.

    CASĀ  PubMedĀ  Google ScholarĀ 

  104. Mizrahi RA, Schirle NT, Beal PA. Potent and selective inhibition of A-to-I RNA editing with 2ā€™-O-methyl/locked nucleic acid-containing antisense oligoribonucleotides. ACS Chem Biol. 2013;8:832ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  105. Qu L, Yi Z, Zhu S, Wang C, Cao Z, Zhou Z, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol. 2019;37:1059ā€“69.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wee Joo Chng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teoh, P.J., Koh, M.Y. & Chng, W.J. ADARs, RNA editing and more in hematological malignancies. Leukemia 35, 346ā€“359 (2021). https://doi.org/10.1038/s41375-020-01076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-01076-2

This article is cited by

Search

Quick links