Chronic myeloproliferative neoplasms

Platelet count predicts driver mutations’ co-occurrence in low JAK2 mutated essential thrombocythemia and myelofibrosis

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Thirty genes-panel DNA sequence variants in 47 patients with essential thrombocythemia and primary myelofibrosis and a low JAK2 allele burden according to double/single mutated status.

References

  1. 1.

    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    CAS  Article  Google Scholar 

  2. 2.

    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl J Med. 2005;352:1779–90.

    CAS  Article  Google Scholar 

  3. 3.

    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl J Med. 2013;369:2379–90.

    CAS  Article  Google Scholar 

  4. 4.

    Passamonti F, Mora B, Maffioli M. New molecular genetics in the diagnosis and treatment of myeloproliferative neoplasms. Curr Opin Hematol. 2016;23:137–43.

    CAS  Article  Google Scholar 

  5. 5.

    Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057–69.

    Article  Google Scholar 

  6. 6.

    Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, et al. Mutation‐enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189:291–302.

    CAS  Article  Google Scholar 

  7. 7.

    Passamonti F. Stem cell transplant in MF: it’s time to personalize. Blood. 2019;133:2118–20.

    CAS  Article  Google Scholar 

  8. 8.

    Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol. 2020. https://doi.org/10.1111/bjh.16576.

  9. 9.

    Lim KH, Chang YC, Gon-Shen Chen C, Lin HC, Wang WT, Chianget YT, et al. Frequent CALR exon 9 alterations in JAK2 V617F-mutated essential thrombocythemia detected by high resolution melting analysis. Blood Cancer J. 2015;5:e295.

    Article  Google Scholar 

  10. 10.

    Mansier O, Luque Paz D, Ianotto JC, Le Bris Y, Chauveau A, Boyer F, et al. Clinical and biological characterization of MPN patients harboring two driver mutations, a French intergroup of myeloproliferative neoplasms (FIM) study. Am J Hematol. 2018;93:E84–6.

    Article  Google Scholar 

  11. 11.

    Boddu P, Chihara D, Masarova L, Pemmaraju N, Patel KP, Verstovsek S. The co-occurrence of driver mutations in chronic myeloproliferative neoplasms. Ann Hematol. 2018;97:2071–80.

    CAS  Article  Google Scholar 

  12. 12.

    Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    CAS  Article  Google Scholar 

  13. 13.

    Alvarez-Larrán A, Pereira A, Guglielmelli P, Hernández-Boluda JC, Arellano-Rodrigo E, Ferrer-Marín F, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016;101:926–31.

    Article  Google Scholar 

  14. 14.

    Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.

    CAS  Article  Google Scholar 

  15. 15.

    Guglielmelli P, Pacilli A, Rotunno G, Rumi E, Rosti V, Delaini F, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129:3227–36.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported, as for the Varese Group, by grants of the Fondazione Regionale Ricerca Biomedica, Milan, Italy [FRRB project no. 2015-0042, Genomic profiling of rare hematologic malignancies, development of personalized medicine strategies, and their implementation into the Rete Ematologica Lombarda (REL) clinical network]; by grants from the Ministero della Salute, Rome, Italy [Finalizzata 2018, NET-2018-12365935, Personalized medicine program on myeloid neoplasms: characterization of the patient’s genome for clinical decision making and systematic collection of real world data to improve quality of health care], by grants from the Ministero dell’Istruzione, dell’Università e della Ricerca, Roma, Italy [PRIN 2017, 2017WXR7ZT; Myeloid Neoplasms: an integrated clinical, molecular and therapeutic approach], by grants from Fondazione Matarelli, Milan, Italy and AIL-Varese ONLUS, Varese, Italy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Passamonti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mora, B., Siracusa, C., Rumi, E. et al. Platelet count predicts driver mutations’ co-occurrence in low JAK2 mutated essential thrombocythemia and myelofibrosis. Leukemia (2020). https://doi.org/10.1038/s41375-020-01053-9

Download citation

Search