Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic myeloproliferative neoplasms

Interferon alpha therapy in essential thrombocythemia and polycythemia vera—a systematic review and meta-analysis

Abstract

Data on the efficacy and safety of interferon (IFN)-α for the treatment of essential thrombocythemia (ET) and polycythemia vera (PV) are inconsistent. We conducted a systematic review and meta-analysis and searched MEDLINE and EMBASE via Ovid, Scopus, COCHRANE registry of clinical trials, and Web of Science from inception through 03/2019 for studies of pegylated IFN (peg-IFN) and non-pegylated IFN (non-peg-IFN) in PV and ET patients. Random-effects models were used to pool response rates for the primary outcome of overall response rate (ORR) defined as a composite of complete response, partial response, complete hematologic response (CHR) and partial hematologic response. Peg-IFN and non-peg-IFN were compared by meta-regression analyses. In total, 44 studies with 1359 patients (730 ET, 629 PV) were included. ORR were 80.6% (95% confidence interval: 76.6–84.1%, CHR: 59.0% [51.5%–66.1%]) and 76.7% (67.4–84.0%; CHR: 48.5% [37.8–59.4%]) for ET and PV patients, respectively. In meta-regression analyses results did not differ significantly for non-peg-IFN vs. peg-IFN. Annualized rates of thromboembolic complications and treatment discontinuation due to adverse events were low at 1.2% and 8.8% for ET and 0.5% and 6.5% for PV patients, respectively. Both peg-IFN and non-peg-IFN can be effective and safe long-term treatments for ET and PV.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Flow chart showing study selection as per the MOOSE guidelines.
Fig. 2: Response to non-pegylated IFN (IFN) and pegylated IFN (peg-IFN) in ET.
Fig. 3: Response to non-pegylated IFN (IFN) and pegylated IFN (peg-IFN) in PV.
Fig. 4: Rate of thromboembolic events (per patient year).
Fig. 5: Discontinuation rate of non-pegylated IFN (IFN) and pegylated IFN (peg-IFN) therapy (for all patients while on study).

References

  1. 1.

    Network NCC. NCCN Guidelines Version 3.2019: Myeloproliferative neoplasms. 2019 [cited 2019 10/11/2019]; https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf.

  2. 2.

    Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130:2475–83.

    CAS  PubMed  Google Scholar 

  3. 3.

    Szuber N, Mudireddy M, Nicolosi M, Penna D, Vallapureddy RR, Lasho TL, et al. 3023 mayo clinic patients with myeloproliferative neoplasms: risk-stratified comparison of survival and outcomes data among disease subgroups. Mayo Clin Proc. 2019;94:599–610.

    PubMed  Google Scholar 

  4. 4.

    Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368:22–33.

    CAS  PubMed  Google Scholar 

  5. 5.

    Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353:33–45.

    CAS  PubMed  Google Scholar 

  6. 6.

    Sterkers Y, Preudhomme C, Lai JL, Demory JL, Caulier MT, Wattel E, et al. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood. 1998;91:616–22.

    CAS  PubMed  Google Scholar 

  7. 7.

    Nand S, Stock W, Godwin J, Fisher SG. Leukemogenic risk of hydroxyurea therapy in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Am J Hematol. 1996;52:42–46.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kiladjian JJ, Rain JD, Bernard JF, Briere J, Chomienne C, Fenaux P. Long-term incidence of hematological evolution in three French prospective studies of hydroxyurea and pipobroman in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost. 2006;32:417–21.

    CAS  PubMed  Google Scholar 

  9. 9.

    Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.

    CAS  PubMed  Google Scholar 

  10. 10.

    Quintas-Cardama A, Abdel-Wahab O, Manshouri T, Kilpivaara O, Cortes J, Roupie AL, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood. 2013;122:893–901.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Stauffer Larsen T, Iversen KF, Hansen E, Mathiasen AB, Marcher C, Frederiksen M, et al. Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res. 2013;37:1041–5.

    CAS  PubMed  Google Scholar 

  12. 12.

    Kiladjian J-J, Mesa RA, Hoffman R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood. 2011;117:4706–15.

    CAS  PubMed  Google Scholar 

  13. 13.

    Masarova L, Bose P, Verstovsek S. The rationale for immunotherapy in myeloproliferative neoplasms. Curr Hematol Malig Rep. 2019;14:310–27. 2019/08/01

    PubMed  Google Scholar 

  14. 14.

    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.

    CAS  PubMed  Google Scholar 

  15. 15.

    Bewersdorf JP, Giri S, Wang R, Podoltsev N, Williams RT, Rampal RK, et al. Interferon therapy in myelofibrosis–a systematic review and meta-analysis. Clin Lymphoma Myeloma Leuk. 2020;S2152-2650(20)30264-0.

  16. 16.

    Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998;52:377–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Stahl M, Bewersdorf JP, Giri S, Wang R, Zeidan AM. Use of Immunosuppressive therapy for management of myelodysplastic syndromes: a systematic review and meta-analysis. Haematologica 2020;105:102–11.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Collaboration TC The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.02011. 2011.

  19. 19.

    Abegg-Werter MJBP, Raemaekers JMM, De Pauw BE, Haanen C. Recombinant interferon-alpha, but not interferon-gamma is effective therapie for essential thrombocythemia. Blut. 1990;60:37–40.

    CAS  PubMed  Google Scholar 

  20. 20.

    Alvarado Y, Cortes J, Verstovsek S, Thomas D, Faderl S, Estrov Z, et al. Pilot study of pegylated interferon-alpha 2b in patients with essential thrombocythemia. Cancer Chemother Pharmacol. 2003;51:81–86.

    CAS  PubMed  Google Scholar 

  21. 21.

    Bentley M, Taylor K, Grigg A, Kronenberg H, Gibson J, Bunce I, et al. Long-term interferon-alpha 2A does not induce sustained hematologic remission in younger patients with essential thrombocythemia. Leuk Lymphoma. 1999;36:123–8.

    CAS  PubMed  Google Scholar 

  22. 22.

    Cervantes F, Salgado C, Feliu E, Montserrat E, Rozman C. Interferon alpha-2b for essential thrombocythaemia: Results in 13 previously untreated patients. Leuk Lymphoma. 1991;4:351–4.

    CAS  PubMed  Google Scholar 

  23. 23.

    Giles FJ, Anderson CC, Grant IR, Hoffbrand AV, Mehta AB, Machin SJ, et al. Recombinant alpha 2a interferon–An effective maintenance agent in essential thrombocythaemia. Leuk Lymphoma. 1990;3:103–7.

    CAS  PubMed  Google Scholar 

  24. 24.

    Giralt M, Rubio D, Cortes MT, Miguel JS, Steegmann JL, Serena J, et al. Alpha interferon in the management of essential thrombocythaemia. Eur J Cancer. 1991;27 Suppl 4:S72–S74.

    PubMed  Google Scholar 

  25. 25.

    Kasparu H, Bernhart M, Krieger O, Lutz D. Remission may continue after termination of rIFNalpha-2b treatment for essential thrombocythemia. Eur J Haematol. 1992;48:33–36.

    CAS  PubMed  Google Scholar 

  26. 26.

    Gowin K, Thapaliy P, Samuelson J, Harrison C, Radia D, Andreasson B, et al. Experience with pegylated interferon alpha -2a in advanced myeloproliferative neoplasms in an international cohort of 118 patients. Haematologica. 2012;97:1570–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gowin K, Jain T, Kosiorek H, Tibes R, Camoriano J, Palmer J, et al. Pegylated interferon alpha - 2a is clinically effective and tolerable in myeloproliferative neoplasm patients treated off clinical trial. Leuk Res. 2017;54:73–77.

    CAS  PubMed  Google Scholar 

  28. 28.

    Huang BT, Zeng QC, Zhao WH, Li BS, Chen RL. Interferon alpha-2b gains high sustained response therapy for advanced essential thrombocythemia and polycythemia vera with JAK2V617F positive mutation. Leuk. Res. 2014;38:1177–83.

    CAS  PubMed  Google Scholar 

  29. 29.

    Jabbour E, Kantarjian H, Cortes J, Thomas D, Garcia-Manero G, Ferrajoli A, et al. PEG-IFN-alpha-2b therapy in BCR-ABL-negative myeloproliferative disorders: final result of a phase 2 study. Cancer. 2007;110:2012–8.

    CAS  PubMed  Google Scholar 

  30. 30.

    Langer C, Lengfelder E, Thiele J, Kvasnicka HM, Pahl HL, Beneke H, et al. Pegylated interferon for the treatment of high risk essential thrombocythemia: results of a phase II study. Haematologica. 2005;90:1333–8.

    CAS  PubMed  Google Scholar 

  31. 31.

    Lopes E, Ribeiro MM, Silva MJ, Gandra M, Principe F, Granato C. Essential thrombocythemia - clinical features, therapy and follow-up of 12 cases. Leukemia. 1992;6 Suppl 3:138S–140S.

    PubMed  Google Scholar 

  32. 32.

    Lazzarino M, Vitale A, Morra E, Gagliardi A, Bernasconi P, Torromeo C, et al. Interferon alpha-2b as treatment for Philadelphia-negative chronic myeloproliferative disorders with excessive thrombocytosis. Br J Haematol. 1989;72:173–7.

    CAS  PubMed  Google Scholar 

  33. 33.

    Lindgren M, Samuelsson J, Nilsson L, Knutsen H, Ghanima W, Westin J, et al. Genetic variation in IL28B (IFNL3) and response to interferon-alpha treatment in myeloproliferative neoplasms. Eur J Haematol. 2018;100:419–25.

    CAS  PubMed  Google Scholar 

  34. 34.

    Masarova L, Patel KP, Newberry KJ, Cortes J, Borthakur G, Konopleva M, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4:e165–e175.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Middelhoff G, Boll I. A long-term clinical trial of interferon alpha-therapy in essential thrombocythemia. Ann Hematol. 1992;64:207–9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Pogliani EM, Rossini F, Miccolis I, Ferrario A, Perego D, Casaroli I, et al. Alpha interferon as initial treatment of essential thrombocythemia. Analysis after two years of follow-up. Tumori. 1995;81:245–8.

    CAS  PubMed  Google Scholar 

  37. 37.

    Radin AI, Kim HT, Grant BW, Bennett JM, Kirkwood JM, Stewart JA, et al. Phase II study of alpha2 interferon in the treatment of the chronic myeloproliferative disorders (E5487): a trial of the Eastern Cooperative Oncology Group. Cancer. 2003;98:100–9.

    CAS  PubMed  Google Scholar 

  38. 38.

    Rametta V, Ferrara F, Marottoli V, Matera C, Mettivier V, Cimino R. Recombinant interferon alpha-2b as treatment of essential thrombocythaemia. Acta Haematol. 1994;91:126–9.

    CAS  PubMed  Google Scholar 

  39. 39.

    Saba R, Jabbour E, Giles F, Cortes J, Talpaz M, O’Brien S, et al. Interferon alpha therapy for patients with essential thrombocythemia: final results of a phase II study initiated in 1986. Cancer. 2005;103:2551–7.

    CAS  PubMed  Google Scholar 

  40. 40.

    Sacchi S, Tabilio A, Leoni P, Riccardi A, Vecchi A, Messora C, et al. Interferon alpha-2b in the long-term treatment of essential thrombocythemia. Ann Hematol. 1991;63:206–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Sacchi S, Gugliotta L, Papineschi F, Liberati AM, Rupoli S, Delfini C, et al. Alfa-interferon in the treatment of essential thrombocythemia: clinical results and evaluation of its biological effects on the hematopoietic neoplastic clone. Leukemia. 1998;12:289–94.

    CAS  PubMed  Google Scholar 

  42. 42.

    Seewann HL, Zikulnig R, Gallhofer G, Schmid C. Treatment of thrombocytosis in chronic myeloproliferative disorders with interferon alfa-2b. Eur J Cancer. 1991;27 Suppl 4:S58–S63.

    PubMed  Google Scholar 

  43. 43.

    Turri D, Mitra ME, Di Trapani R, Lipari MG, Perricone R, Cajozzo A. Alpha-interferon in polycythemia vera and essential thrombocythemia. Haematologica. 1991;76:75–77.

    CAS  PubMed  Google Scholar 

  44. 44.

    Verger E, Cassinat B, Chauveau A, Dosquet C, Giraudier S, Schlageter M-H, et al. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood. 2015;126:2585–91.

    CAS  PubMed  Google Scholar 

  45. 45.

    Yataganas X, Meletis J, Plata E, Viniou N, Deligiannis F, Tsekoura C, et al. Alpha interferon treatment of essential thrombocythaemia and other myeloproliferative disorders with excessive thrombocytosis. Eur J Cancer. 1991;27 Suppl 4:S69–S71.

    PubMed  Google Scholar 

  46. 46.

    Zhang ZR, Duan YC. Interferon apha 2b for treating patients with JAK2V617F positive polycythemia vera and essential thrombocytosis. Asian Pac J Cancer Prev. 2014;15:1681–4.

    PubMed  Google Scholar 

  47. 47.

    Berte R, Vallisa D, Ferrari B, Civardi G, Sbolli G, Cavanna L. Low-dose interferon alpha treatment in essential thrombocythemia. Eur J Haematol. 1996;56:104–5.

    CAS  PubMed  Google Scholar 

  48. 48.

    Gisslinger H, Chott A, Scheithauer W, Gilly B, Linkesch W, Ludwig H. Interferon in essential thrombocythaemia. Br. J. Haematol. 1991;79 Suppl 1:42–47.

    CAS  PubMed  Google Scholar 

  49. 49.

    Crisa E, Cerrano M, Beggiato E, Benevolo G, Lanzarone G, Manzini PM, et al. Can pegylated interferon improve the outcome of polycythemia vera patients? J. Hematol Oncol. 2017;10:15.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Foa P, Massaro P, Caldiera S, LaTargia ML, Iurlo A, Clerici C, et al. Long-term therapeutic efficacy and toxicity of recombinant interferon- alpha 2a in polycythaemia vera. Eur J Haematol. 1998;60:273–7.

    CAS  PubMed  Google Scholar 

  51. 51.

    Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126:1762–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Heis N, Rintelen C, Gisslinger B, Knobl P, Lechner K, Gisslinger H. The effect of interferon alpha on myeloproliferation and vascular complications in polycythemia vera. Eur J Haematol. 1999;62:27–31.

    CAS  PubMed  Google Scholar 

  53. 53.

    Jones AV, Silver RT, Waghorn K, Curtis C, Kreil S, Zoi K, et al. Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood. 2006;107:3339–41.

    CAS  PubMed  Google Scholar 

  54. 54.

    Kiladjian JJ, Guglielmelli P, Griesshammer M, Saydam G, Masszi T, Durrant S, et al. Efficacy and safety of ruxolitinib after and versus interferon use in the RESPONSE studies. Ann Hematol. 2018;97:617–27.

    CAS  PubMed  Google Scholar 

  55. 55.

    Öztürk A, Günay A, Üskent N. Therapeutic efficacy of recombinant interferon-alpha in polycythaemia vera. Acta Haematologica. 1998;99:89–91.

    PubMed  Google Scholar 

  56. 56.

    Utke Rank C, Weis Bjerrum O, Larsen TS, Kjaer L, De Stricker K, Riley CH, et al. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma. 2016;57:348–54.

    PubMed  Google Scholar 

  57. 57.

    Stasi R, Venditti A, Del Poeta G, Conforti M, Brunetti M, Bussa S, et al. Role of human leukocyte interferon-alpha in the treatment of patients with polycythemia vera. Am J Med Sci. 1998;315:237–41.

    CAS  PubMed  Google Scholar 

  58. 58.

    Larsen TS, Moller MB, de Stricker K, Norgaard P, Samuelsson J, Marcher C, et al. Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete hematological remission. Hematology. 2009;14:331–4.

    CAS  PubMed  Google Scholar 

  59. 59.

    Taylor PC, Dolan G, Ng JP, Paul B, Collin R, Reilly JT. Efficacy of recombinant interferon-alpha (rIFN-alpha) in polycythaemia vera: a study of 17 patients and an analysis of published data. Br J Haematol. 1996;92:55–59.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kuriakose E, Vandris K, Wang YL, Chow W, Jones AV, Christos P, et al. Decrease in JAK2 V617F allele burden is not a prerequisite to clinical response in patients with polycythemia vera. Haematologica. 2012;97:538–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization–essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120:5128–33.

    CAS  PubMed  Google Scholar 

  62. 62.

    Gisslinger H, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7:e196–e208.

    PubMed  Google Scholar 

  63. 63.

    Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057–69.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23:2224–32.

    PubMed  Google Scholar 

  65. 65.

    Cortelazzo S, Viero P, Finazzi G, D’Emilio A, Rodeghiero F, Barbui T. Incidence and risk factors for thrombotic complications in a historical cohort of 100 patients with essential thrombocythemia. J Clin Oncol. 1990;8:556–62.

    CAS  PubMed  Google Scholar 

  66. 66.

    Mascarenhas J, Kosiorek H, Prchal J, Yacoub A, Berenzon D, Baer MR, et al. A prospective evaluation of pegylated interferon alfa-2a therapy in patients with polycythemia vera and essential thrombocythemia with a prior splanchnic vein thrombosis. Leukemia. 2019;33:2974–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ito T, Hashimoto Y, Tanaka Y, Nakaya A, Fujita S, Satake A, et al. Efficacy and safety of anagrelide as a first-line drug in cytoreductive treatment-naïve essential thrombocythemia patients in a real-world setting. Eur J Haematol. 2019;103:116–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Gisslinger H, Gotic M, Holowiecki J, Penka M, Thiele J, Kvasnicka HM, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121:1720–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Spivak JL. Myeloproliferative Neoplasms. N Engl J Med. 2017;376:2168–81.

    CAS  PubMed  Google Scholar 

  70. 70.

    Ferrari A, Carobbio A, Masciulli A, Ghirardi A, Finazzi G, De Stefano V, et al. Clinical outcomes under hydroxyurea treatment in polycythemia vera: a systematic review and meta-analysis. Haematologica. 2019;104:2391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A, et al. Results of the myeloproliferative neoplasms–research consortium (MPN-RC) 112 randomized trial of pegylated interferon alfa-2a (PEG) versus hydroxyurea (HU) therapy for the treatment of high risk polycythemia vera (PV) and high risk essential thrombocythemia (ET). Blood. 2018;132 Suppl 1:577–577.

    Google Scholar 

  72. 72.

    Mesa RA, Kosiorek HE, Mascarenhas J, Prchal JT, Rambaldi A, Berenzon D, et al. Impact on MPN symptoms and quality of life of front line pegylated interferon alpha-2a vs. hydroxyurea in high risk polycythemia vera and essential thrombocythemia: results of myeloproliferative disorders research consortium (MPD-RC) 112 Global Phase III Trial. Blood. 2018;132 Suppl 1:3032–3032.

    Google Scholar 

  73. 73.

    Hatalova A, Schwarz J, Gotic M, Penka M, Hrubisko M, Kusec R, et al. Recommendations for the diagnosis and treatment of patients with polycythaemia vera. Eur J Haematol. 2018;101:654–64.

    Google Scholar 

  74. 74.

    Beauverd Y, Radia D, Cargo C, Knapper S, Drummond M, Pillai A, et al. Pegylated interferon alpha-2a for essential thrombocythemia during pregnancy: outcome and safety. A case series. Haematologica. 2016;101:e182–e184.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Antonioli E, Carobbio A, Pieri L, Pancrazzi A, Guglielmelli P, Delaini F, et al. Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica. 2010;95:1435–8.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Them NC, Bagienski K, Berg T, Gisslinger B, Schalling M, Chen D, et al. Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg-proline-interferon alpha-2b. Am J Hematol. 2015;90:288–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Barosi G, Mesa R, Finazzi G, Harrison C, Kiladjian J-J, Lengfelder E, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood. 2013;121:4778–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Ruggeri M, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29:3179–84.

    PubMed  Google Scholar 

  79. 79.

    Barosi G, Tefferi A, Besses C, Birgegard G, Cervantes F, Finazzi G, et al. Clinical end points for drug treatment trials in BCR-ABL1-negative classic myeloproliferative neoplasms: consensus statements from European LeukemiaNET (ELN) and Internation Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT). Leukemia. 2015;29:20–26.

    CAS  PubMed  Google Scholar 

  80. 80.

    Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–35.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Guglielmelli P, Pietra D, Pane F, Pancrazzi A, Cazzola M, Vannucchi AM, et al. Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders–A consensus project of the Italian Society of Hematology. Leuk Res. 2017;58:63–72.

    PubMed  Google Scholar 

  82. 82.

    Barbui T, Masciulli A, Marfisi MR, Tognoni G, Finazzi G, Rambaldi A, et al. White blood cell counts and thrombosis in polycythemia vera: a subanalysis of the CYTO-PV study. Blood. 2015;126:560–1.

    CAS  PubMed  Google Scholar 

  83. 83.

    Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114:759–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ronner L, Podoltsev N, Gotlib J, Heaney ML, Kuykendall AT, O’Connell C, et al. Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood. 2020;135:1696–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019;134:1498–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Murphy S, Iland H, Rosenthal D, Laszlo J. Essential thrombocythemia: an interim report from the polycythemia vera study group. Semin Hematol. 1986;23:177–82.

    CAS  PubMed  Google Scholar 

  87. 87.

    Barosi G, Birgegard G, Finazzi G, Griesshammer M, Harrison C, Hasselbalch HC, et al. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood. 2009;113:4829–33.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AMZ is a Leukemia and Lymphoma Society Scholar in Clinical Research and is also supported by a National Cancer Institute (NCI) Cancer Clinical Investigator Team Leadership Award (CCITLA). Research reported in this publication was supported by the NCI of the National Institutes of Health under Award Number P30 CA016359 and Cancer Center Support Grant/Core Grant to Memorial Sloan Kettering Cancer Center (P30 CA008748) The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maximilian Stahl.

Ethics declarations

Conflict of interest

NAP consulted for and received honoraria from Alexion, Pfizer, Agios Pharmaceuticals, Blueprint Medicines, Incyte, Novartis, Celgene, Bristol-Myers Squib and CTI biopharma. NAP received research funding (all to the institution) from Boehringer Ingelheim, Astellas Pharma, Daiichi Sankyo, Sunesis Pharmaceuticals, Jazz Pharmaceuticals, Pfizer, Astex Pharmaceuticals, CTI biopharma, Celgene, Genentech, AI Therapeutics, Samus Therapeutics, Arog Pharmaceuticals and Kartos Therapeutics. MST has received research funding from Abbvie, Cellerant, Orsenix, ADC Therapeutics, and Biosight. RKR has received consulting fees from: Constellation, Incyte, Celgene, Promedior, CTI, Jazz Pharmaceuticals, Blueprint, Stemline, and research funding from Incyte, Constellation, Stemline. MST has received honoraria for MST has received research funding from Abbvie, Cellerant, Orsenix, ADC Therapeutics, and Biosight. MST has received honoraria for advisory board membership from Abbvie, BioLineRx, Daiichi-Sankyo, Orsenix, KAHR, Rigel, Nohla, Delta Fly Pharma, Tetraphase, Oncolyze, and Jazz Pharma. MST received patents and royalties from UpToDate. AMZ received research funding (institutional) from Celgene, Acceleron, Abbvie, Novartis, Otsuka, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Trovagene, Incyte, Takeda, and ADC Therapeutics. AMZ had a consultancy with and received honoraria from AbbVie, Otsuka, Pfizer, Celgene, Jazz, Ariad, Incyte, Agios, Boehringer-Ingelheim, Novartis, Acceleron, Astellas, Daiichi Sankyo, Cardinal Health, Seattle Genetics, BeyondSpring, Trovagene, Ionis, Epizyme, Amgen, Tyme, Janssen, and Takeda. AMZ received travel support for meetings from Pfizer, Novartis, and Trovagene. None of these relationships were related to the development of this manuscript. All other authors report no relevant disclosures/competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bewersdorf, J.P., Giri, S., Wang, R. et al. Interferon alpha therapy in essential thrombocythemia and polycythemia vera—a systematic review and meta-analysis. Leukemia 35, 1643–1660 (2021). https://doi.org/10.1038/s41375-020-01020-4

Download citation

Further reading

Search

Quick links