Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelodysplastic syndrome

Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)—a study of 1084 patients

Abstract

Loss-of-function TET2 mutations (TET2MT) are frequent early clonal events in myeloid neoplasms and are thought to confer a fitness advantage to hematopoietic precursors. This large, multi-institutional study (n = 1084), investigated the TET2 mutational landscape and prognostic implications of the number, type, and location of TET2MT and the epistatic relationship with other somatic events in chronic myelomonocytic leukemia (CMML). Nine hundred and forty-two TET2MT were identified in 604 (56%) patients, of which 710 (75%) were predicted to be truncating (involving the catalytic domain). Three hundred and sixteen (29%) patients had ≥1 TET2MT, with 28%, 1%, and 0.2% harboring 2, 3, and 5 mutations, respectively. In comparison to TET2WT, TET2MT patients were older in age, more likely to have dysplastic CMML, a higher number of co-occurring mutations, and lower-risk stratification. Importantly, TET2MT were associated with a survival advantage (49 vs. 30 months, p < 0.0001), especially in the context of multiple TET2MT (≥2; 57 months, p < 0.001), and truncating TET2MT (51 months, p < 0.001). In addition, the adverse prognostic impact of ASXL1MT was partially mitigated by concurrent TET2MT, with the ASXL1WT/TET2MT genotype having better outcomes and resulting in further risk stratification of ASXL1 inclusive CMML prognostic models, in comparison to ASXL1MT alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular characteristics, including concurrent gene mutations, mutation type and localization, distribution of multiple mutations and mutational signatures in TET2 mutant pateints with chronic myelomonocytic leukemia.
Fig. 2: Kaplan-Meier survival estimates in patients with CMML, AML, PV, ET, MDS and DLBCL, stratified by the presence or absence of TET2 mutations.
Fig. 3: Kaplan-Meier survial estimates in CMML patients stratified by their ASXL1/TET2 mutational status and the impact of the ASXL1WT/TET2MT genotype on risk stratification using CMML-specific prognostic models.
Fig. 4: Kaplan-Meier survival estimates in patients with CMML stratified by their TET2 mutational status, the ASXL1/TET2 genotype and treatment with hypomethylating agents.

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  2. Patnaik MM, Wassie EA, Lasho TL, Hanson CA, Ketterling R, Tefferi A. Blast transformation in chronic myelomonocytic leukemia: risk factors, genetic features, survival, and treatment outcome. Am J Hematol. 2015;90:411–6.

    Article  PubMed  Google Scholar 

  3. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol. 2018;93:824–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patnaik MM, Itzykson R, Lasho T, Kosmider O, Finke C, Hanson C, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206.

    Article  CAS  PubMed  Google Scholar 

  5. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patnaik MM, Lasho TL, Vijayvargiya P, Finke CM, Hanson CA, Ketterling RP, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36.

    Article  CAS  PubMed  Google Scholar 

  8. Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell. 2013;155:1545–55.

    Article  CAS  PubMed  Google Scholar 

  9. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Cai X, Cai C-L, Wang J, Zhang W, Petersen BE, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R. et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci. 2011;108:14566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20:25–38.

    Article  CAS  PubMed  Google Scholar 

  16. Kunimoto H, Fukuchi Y, Sakurai M, Sadahira K, Ikeda Y, Okamoto S, et al. Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells. Sci Rep. 2012;2:273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130:753–62.

    Article  CAS  PubMed  Google Scholar 

  19. Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.

    Article  PubMed  Google Scholar 

  20. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Network CGAR. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  22. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241.

    Article  CAS  PubMed  Google Scholar 

  23. Lemonnier F, Couronné L, Parrens M, Jaïs J-P, Travert M, Lamant L, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120:1466–9.

    Article  CAS  PubMed  Google Scholar 

  24. Odejide O, Weigert O, Lane AA, Toscano D, Lunning MA, Kopp N, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123:1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asmar F, Punj V, Christensen J, Pedersen MT, Pedersen A, Nielsen AB, et al. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica. 2013;98:1912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B-cell lymphoma. Cell. 2017;171:481–494.e415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378:1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohlmann A, Grossmann V, Klein H-U, Schindela S, Weiss T, Kazak B, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28:3858–65.

    Article  CAS  PubMed  Google Scholar 

  30. Grossmann V, Kohlmann A, Eder C, Haferlach C, Kern W, Cross N, et al. Molecular profiling of chronic myelomonocytic leukemia reveals diverse mutations in >80% of patients with TET2 and EZH2 being of high prognostic relevance. Leukemia. 2011;25:877.

    Article  CAS  PubMed  Google Scholar 

  31. Kosmider O, Gelsi-Boyer V, Racoeur C, Jooste V, Vey N, Quesnel B, et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica. 2009;94:1676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gäken J, Lea NC, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116:3923–32.

    Article  CAS  PubMed  Google Scholar 

  33. Patnaik M, Zahid M, Lasho T, Finke C, Ketterling R, Gangat N, et al. Number and type of TET2 mutations in chronic myelomonocytic leukemia and their clinical relevance. Blood Cancer J. 2016;6:e472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirsch CM, Nazha A, Kneen K, Abazeed ME, Meggendorfer M, Przychodzen BP, et al. Consequences of mutant TET2 on clonality and subclonal hierarchy. Leukemia. 2018;32:1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wassie EA, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic‐French Consortium Study. Am J Hematol. 2014;89:1111–5.

    Article  CAS  PubMed  Google Scholar 

  36. Such E, Cervera J, Costa D, Solé F, Vallespí T, Luño E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96:375–83.

    Article  PubMed  Google Scholar 

  37. Padron E, Yoder S, Kunigal S, Mesa T, Teer JK, Al Ali N, et al. ETV6 and signaling gene mutations are associated with secondary transformation of myelodysplastic syndromes to chronic myelomonocytic leukemia. Blood. 2014;123:3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coston T, Pophali P, Vallapureddy R, Lasho TL, Finke CM, Ketterling RP, et al. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol. 2019;94:767–79. https://doi.org/10.1002/ajh.25488

  40. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013;3:246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Awada H, Nagata Y, Goyal A, Asad MF, Patel B, Hirsch CM, et al. Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia. Blood Adv. 2019;3:339–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PAC, Rappsilber J, et al. TET1 and hydroxymethylation in transcription and DNA methylation fidelity. Nature. 2011;473:343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013;32:645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Montagner S, Leoni C, Emming S, Della Chiara G, Balestrieri C, Barozzi I, et al. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Rep. 2016;15:1566–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang L, Ozark PA, Smith ER, Zhao Z, Marshall SA, Rendleman EJ, et al. TET2 coactivates gene expression through demethylation of enhancers. Sci Adv. 2018;4:eaau6986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan F, Wingo TS, Zhao Z, Gao R, Makishima H, Qu G, et al. Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells. Nat Commun. 2017;8:15102.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 2011;25:1147.

    Article  CAS  PubMed  Google Scholar 

  48. Bejar R, Lord A, Stevenson K, Bar-Natan M, Pérez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124:2705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska A, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28:78.

    Article  CAS  PubMed  Google Scholar 

  50. Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine. 2018;31:174–81.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13.

    Article  CAS  PubMed  Google Scholar 

  52. Valencia A, Masala E, Rossi A, Martino A, Sanna A, Buchi F, et al. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia. 2014;28:621.

    Article  CAS  PubMed  Google Scholar 

  53. Saunthararajah Y. Key clinical observations after 5-azacytidine and decitabine treatment of myelodysplastic syndromes suggest practical solutions for better outcomes. Hematol Am Soc Hematol Educ Program. 2013;2013:511–21.

    Article  Google Scholar 

  54. Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Current publication is supported in part by grants from the “The Henry J. Predolin Foundation for Research in Leukemia”, and the “Gerstner Family Career Development Award”, “Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA”. This work was also partly funded by the Conquer Cancer Foundation of ASCO Young Investigator Award awarded to AAM. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect those of the American Society of Clinical Oncology or Conquer Cancer Foundation or the funder. AMV was partially supported by grant Accelerator Award from CR, UK and AIRC, I. AMV and GC were supported by AIRC 5 × 1000 call “Metastatic disease: the key unmet need in oncology” to MYNERVA project, #21267 (MYeloid NEoplasms Research Venture AIRC). ES team is supported by the Ligue Nationale Contre le Cancer (Equipe labellisée Ligue 2017) and grants from Institut National du Cancer (INCa TRANSLA13-157; PRT-K16-057; PRT-K16-067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal M. Patnaik.

Ethics declarations

Conflict of interest

MMP: advisory board for Stem Line Pharmaceuticals. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coltro, G., Mangaonkar, A.A., Lasho, T.L. et al. Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)—a study of 1084 patients. Leukemia 34, 1407–1421 (2020). https://doi.org/10.1038/s41375-019-0690-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0690-7

This article is cited by

Search

Quick links