Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lymphoma

Targetability of STAT3-JAK2 fusions: implications for T-cell lymphoproliferative disorders of the gastrointestinal tract

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Function of STAT3-JAK2 fusion.
Fig. 2: Targetability of STAT3-JAK2 fusion.

References

  1. Mitchell TJ, John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology. 2005;114:301–12.

    Article  CAS  Google Scholar 

  2. Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol. 2017;451:66–70.

    Article  CAS  Google Scholar 

  3. Sharma A, Oishi N, Boddicker RL, Hu G, Benson HK, Ketterling RP, et al. Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood. 2018;131:2262–6.

    Article  CAS  Google Scholar 

  4. Jaffe ES, Chott A, Ott G, Chan JKC,GB, Tan SY, et al. Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization classification of tumours. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017. pp. 379–80.

  5. Vega F, Medeiros LJ. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch Pathol Lab Med. 2003;127:1148–60.

    CAS  PubMed  Google Scholar 

  6. Lacronique V, Boureux A, Monni R, Dumon S, Mauchauffe M, Mayeux P, et al. Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood. 2000;95:2076–83.

    Article  CAS  Google Scholar 

  7. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    Article  CAS  Google Scholar 

  8. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997;278:1309–12.

    Article  CAS  Google Scholar 

  9. Yao L, Wen L, Wang N, Liu T, Xu Y, Ruan C, et al. Identification of novel recurrent STAT3-RARA fusions in acute promyelocytic leukemia lacking t(15;17)(q22;q12)/PML-RARA. Blood. 2018;131:935–9.

    Article  Google Scholar 

  10. Perry AM, Warnke RA, Hu Q, Gaulard P, Copie-Bergman C, Alkan S, et al. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Blood. 2013;122:3599–606.

    Article  CAS  Google Scholar 

  11. Hobbs GS, Rozelle S, Mullally A. The development and use of Janus kinase 2 inhibitors for the treatment of myeloproliferative neoplasms. Hematol Oncol Clin North Am. 2017;31:613–26.

    Article  Google Scholar 

  12. Ehrentraut S, Nagel S, Scherr ME, Schneider B, Quentmeier H, Geffers R, et al. t(8;9)(p22;p24)/PCM1-JAK2 activates SOCS2 and SOCS3 via STAT5. PLoS ONE. 2013;8:e53767.

    Article  CAS  Google Scholar 

  13. Ng SY, Yoshida N, Christie AL, Ghandi M, Dharia NV, Dempster J, et al. Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nat Commun. 2018;9:2024.

    Article  Google Scholar 

  14. Margolskee E, Jobanputra V, Lewis SK, Alobeid B, Green PH, Bhagat G. Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS ONE. 2013;8:e68343.

    Article  CAS  Google Scholar 

  15. Gorantla S, KS B, AL I, N vB, C P, Duyster J. Ruxolitinib mediated paradox JAK2 hyperphosphorylation is due to the protection of activation loop phosphotyrosines from phosphatases. Blood. 2013;122:2847.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Award Numbers R01 CA177734 (ALF), P30 CA15083 (Mayo Clinic Cancer Center), and P50 CA97274 (University of Iowa/Mayo Clinic Lymphoma SPORE) from the National Cancer Institute; Grant number 6574-19 from the Leukemia & Lymphoma Society; the Department of Laboratory Medicine and Pathology, Mayo Clinic; the Clinomics Program of the Center for Individualized Medicine, Mayo Clinic; and the Predolin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Feldman.

Ethics declarations

Conflict of interest

GSN has consulted for Celgene, MorphoSys, Bayer, AbbVie, Janssen, Selvita, Karyopharm Therapeutics, and Soreno, and has received research support from Curis, Roche, Celgene, MorphoSys, and NanoString. ALF has received research support from Seattle Genetics. The remaining authors have no competing financial interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Phillips, J.L., Dasari, S. et al. Targetability of STAT3-JAK2 fusions: implications for T-cell lymphoproliferative disorders of the gastrointestinal tract. Leukemia 34, 1467–1471 (2020). https://doi.org/10.1038/s41375-019-0678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0678-3

Search

Quick links