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Single agent talacotuzumab demonstrates limited efficacy but
considerable toxicity in elderly high-risk MDS or AML patients failing
hypomethylating agents
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To the Editor:

First line standard therapeutic approaches in elderly high-
risk (HR) MDS or AML patients are largely based on
hypomethylating agents (HMAs) including azacitidine
(AZA) or decitabine (DAC), but responses are generally
short-lived and occur only in 50–60% of patients [1, 2].
Patients failing HMAs have a dismal prognosis with a
median survival of around 5 months [3]. The high unmet
medical need for new treatment options makes this patient
population an important target of ongoing clinical research.

CD123 (Interleukin-3 receptor alpha chain [IL3RA]) is a
potential target for antibody- or cell-based therapies directed
towards leukemic stem cells (LSCs) [4], because CD123 is
overexpressed on leukemic blasts and an important growth

and differentiation receptor for early LSCs [5]. Upregulated
expression of CD123 has been associated with higher blast
cell counts at diagnosis and poorer complete response (CR)
and survival rates in AML [6]. Moreover, the CD123
expression is low/absent on normal hematopoietic stem
cells, making CD123 an attractive and specific target for
immunotherapy-based approaches [7, 8]. Talacotuzumab
(TAL, JNJ-56022473) is an IgG1 monoclonal antibody
targeting CD123 preferentially via antibody-dependent
cellular cytotoxicity (ADCC) mediated by natural killer
(NK) cells [9] and has been shown to induce potent in vitro
ADCC against IL3RA-expressing AML blasts/LSC and to
reduce leukemic cell growth in murine xenograft models of
human AML [10]. In addition, the antibody inhibits sig-
naling by IL-3, the main ligand of CD123, to reduce the
proliferation of leukemic progenitor cells [11].

The SAMBA trial, a phase II investigator-initiated study
(NCT02992860) of the German and French MDS study
groups within the EMSCO network, assessed as primary
endpoint the overall hematological response rate (CR,
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partial response (PR), marrow CR (CRi), or hematological
improvement (HI)) according to IWG 2006 criteria [12]
after 3 months of single agent TAL treatment in elderly HR-
MDS (IPSS intermediate II and high risk) and AML
patients failing HMA therapy. Dose and dosing schedule
based on PK, PD, and safety data was generated in the prior
phase I study (NCT01632852). TAL was given IV at a dose
of 9 mg/kg once every 2 weeks (14d ± 2d) for a total of 6
infusions over 3 months. Responders could go on to receive
up to 20 additional infusions, whereas for nonresponders
initial treatment with TAL was followed by an up to
9 months observation period without further treatment.

The study was initially powered to include a total of 43
patients, but the SAMBA trial was prematurely terminated
because the manufacturer decided to stop the entire TAL
study program due to lack of efficacy and high toxicity rates
in a pivotal study involving TAL in combination with DAC
as first line treatment in AML (NCT02472145) [13]. Con-
sequently, only 24 patients (19 AML and 5 HR-MDS) with
a median age of 77 years (range 71–90) who either failed to
achieve CR, PR, HI, or relapsed after at least six AZA or
four DAC treatment cycles were included in the study from
November 2016 until June 2017. Informed consent was
obtained from all included patients prior start of TAL
treatment. Among the 24 included patients, 16 patients
(66.6%) were resistant to prior HMA therapy and 8 patients
(33.3%) relapsed after initially HMA response. Patient
disposition is provided in Table 1, including molecular
genetics at study entry in line with a poor-risk and advanced
study population.

We observed significant toxicities after TAL treatment,
most frequent severe adverse events were infections (n= 26),
cytopenias (n= 6), cardiac and gastrointestinal disorders (n=
6, each), infusion-related reactions (n= 4) as well as nervous
system disorders (n= 3) including one patient with cerebral
infarction and one patient with reversible Guillain-Barré
syndrome. Due to high treatment-related toxicity only 10
patients (42%) reached the planned response assessment after
3 months, with the remaining 14 patients (58%) being
assessed for response after 2 months of treatment. Reasons for
premature study discontinuation in these 14 patients were
disease progression (n= 4), adverse event (n= 1), withdrawal
of informed consent (n= 2), investigator decision (n= 1),
and death (n= 6), two of these patients died from pneumonia
possibly related to treatment toxicity.

The 4 weeks mortality rate was 20.8 % (n= 5) and the
8 weeks mortality rate 25% (n= 6). The overall response
rate was 8.3% (n= 2) including one complete remission
with incomplete hematologic recovery (CRi) and one ery-
throid hematologic improvement (HI-E). Moreover, three
additional patients experienced disease stabilization (SD)
after TAL treatment according to IWG 2006 response cri-
teria [12]. Response duration was 22 weeks (CRi) and

Table 1 Patient baseline characteristics in the SAMBA trial

Patient characteristics, n, (%) n= 24

Age (years), median (IQR) 77 (71–90)

AML 19 (79%)

MDS 5 (21%)

Cytogenetics, n, (%)

Normal karyotype 12 (50%)

Abnormal karyotype 12 (50%)

Complex karyotype (≥3) 5 (21%)

ELN 2017 AML risk classification (n= 19)

Favorable 2 (10%)

Intermediate 8 (43%)

Unfavorable 9 (47%)

Somatic mutations, n, (%)

No mutation 2 (8%)

≥1 mutation 22 (92%)

≥2 mutations 16 (67%)

≥3 mutations 15 (63%)

Epigenetic

ASXL1 7 (29%)

TET2 6 (25%)

EZH2 4 (17%)

DNMT3A 3 (13%)

IDH1 3 (13%)

BCORL1 2 (8%)

IDH2 2 (8%)

BCOR 2 (8%)

Cohesin

STAG2 4 (17%)

RAD21 1 (4%)

Splicing

SRSF2 4 (17%)

SF3B1 2 (8%)

U2AF1 2 (8%)

ZRSR2 2 (8%)

Transcription factors

RUNX1 3 (13%)

CEPBA 3 (13%)

CUX1 1 (4%)

GATA2 1 (4%)

TP53

TP53 7 (29%)

Signaling

NRAS 2 (8%)

KRAS 2 (8%)

PTPN11 2 (8%)

JAK2 1 (4%)

Others

NPM1 2 (8%)

PHF6 2 (8%)

KDM6A 1 (4%)

NOTCH1 1 (4%)

Blood counts, median, (range)

WBC (/nl) 2.51 (0.37–12.64)

Hemoglobin (g/dl) 9.25 (8.05–11.7)

PLT (/nl) 28 (4–1018)

ANC (/nl) 0.59 (0.0–5.59)

Lymphocytes (/nl) 0.80 (0.024–4)
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8 weeks (HI-E), respectively. The median duration of
treatment was 57 days (range 1–374 days) and median
overall survival for the entire patient cohort was 3.6 months
(range <1.0–16.5 months). Six patients showed a reduction
in blast percentage in bone marrow (BM) during the study,
while others displayed no change or an increase in BM
blasts during treatment (Fig. 1a).

The one patient achieving CRi after three doses of TAL
treatment was an AML patient with initially 24% BM blasts
and an adverse risk cytogenetic profile harboring a complex
karyotype (−5; −7; −17/abnl (17p)), molecular analysis
using NGS revealed an isolated TP53 mutation. The patient
achieving HI-E after four doses of TAL treatment was an
AML patient with 30% BM blasts at screening and normal
karyotype but mutated NPM1, DNMT3A, and RAD21.

The study was accompanied by immune monitoring via
flow cytometry to investigate the distribution of T-, NK
cells, blasts (CD34+ and CD117+), monocytes and
myeloid-derived suppressor cells (MDSCs) in peripheral
blood (PB) and BM at the time of screening and during
therapy. Before treatment initiation, patients (n= 24) dis-
played a disturbed immune profile compared with aged-
matched healthy controls (HC, n= 24). The activation state
of NK cells is determined by the balance of stimulatory and
inhibitory receptors [14]. Compared with HC, patients
expressed lower levels of CD56dim NK cells in PB (73 vs.
84% of NK cells; p= 0.065) (Fig. 1b), significantly higher
levels of inhibiting NK-cell receptors such as KIR2DL2
(8.8 vs. 3.5% of NK cells; p= 0.005) and lower levels of
activating NK-cell receptors such as NKG2D (93 vs. 99%
of NK cells; p= 0.004). These findings are in line with
previous studies demonstrating an association between
impaired NK-cell activity in MDS or AML patients and
higher International Prognostic Score (IPSS), abnormal
karyotype, excess of BM blasts and BM hypercellularity
[15]. Patients also showed an increased number of T reg-
ulatory cells (Tregs) in PB compared with HC (Tregs 2.32
vs. 1.59% of leukocytes; p= 0.01) whereas patients had a
significantly less median total leukocyte count compared to
HC (2.41/nl vs. 6.36/nl, p= 0.002). Interestingly, those
patients with a reduction in BM blast count after TAL
treatment (Fig. 1a) exhibited initially a significant higher
percentage of Tregs in PB compared to nonresponders (4.79

vs. 2.46% of leukocytes; p= 0.049). Overall, absolute
concentration of Tregs in PB (1–70 cells/µl) and circulating
blasts counts were highly variable in patients (0.01–76.69%
of leukocytes, mean 10.37%).

Moreover, compared to nonresponders, responders showed
a significantly higher percentage of absolute CD8+ T-cell
count in PB (46.41 vs. 23.14% of lymphocytes; p= 0.049). In
contrast to this observation, we detected a lower percentage of
CD4+ T cells in responders compared with nonresponders
(27.8% of lymphocytes vs. 57.9%; p= 0.07). In addition,
there was a higher percentage of T cells in patients than in HC
(75.5% of lymphocytes vs. 68.3%; p= 0.06) but lower per-
centages of B cells in patients compared with HC (5.7% of
lymphocytes vs. 10.6%; p= 0.015). At screening, the pro-
portion of T cells and monocytes expressing PD-1 (%) as well
as their matching ligands PD-L1 and PD-L2 on blasts and
monocytes in PB was significantly higher in patients com-
pared with HC (p < 0.01, Fig. 1c, d), suggesting an exhausted
T-cell immune status in these HMA-failure patients prior to
treatment initiation. During TAL therapy, PD-L1 expression
on T cells further increased significantly (from 9.6 to 16.0%;
p= 0.047), but we could not detect any significant differences
between responders and nonresponders.

MDSCs are markedly expanded in the BM of MDS
patients, playing a key pathogenetic role in the development
of ineffective hematopoiesis and disease progression, while
enhancing immunosuppression by inhibiting T- and NK-
cell activation [16]. Expression (%) of CD123 on immature
MDSC (iMDSC) was higher in HC than in patients (Fig. 1e)
and pre-treatment expression (MFI) of CD123 on iMDSCs
was higher in responders than in nonresponders (2565 vs.
302; P= 0.07). MDSCs with high CD123 expression might
have been more susceptible to NK-mediated killing after
TAL, resulting in enhanced T- and NK-cell activation and
subsequent increase in ADCC lysis of BM blasts. Corre-
sponding to this observation, we observed in all patients a
negative correlation between the percentage of NK cells and
iMDSCs (r −0.44; p= 0.031). Anti-CD123 targeted ther-
apy resulted in decreased CD123+MFI (4240 vs. 2910;
p= 0.004) on PB iMDSCs and furthermore in a reduction
of CD123-positive iMDSC in BM (0.08 vs. 0.02% of leu-
kocytes, p= 0.05). At baseline, patients showed a higher
expression of CD123+BM blasts compared with HC (MFI
227 vs 170, p= 0.06) (Fig. 1f). However, there were no
significant differences in CD123 expression on BM blasts
between responders and nonresponders.

To conclude, our data indicate that blockade of CD123
was clinically less effective in this advanced study popu-
lation including HR-MDS and AML patients resistant to
previous HMA therapy. Patients already displayed sig-
nificant alterations in their NK and T-cell repertoire prior to
study treatment. Most importantly, there was significant
toxicity that led to a high rate of early treatment

Table 1 (continued)

Patient characteristics, n, (%) n= 24

BM blasts (%) 27 (7–89)

Interval from diagnosis (years) 1.76 (0.61–7.82)

Therapy outcome, median, (range)

Days on treatment 57 (1–374)

Cycles completed 3 (1–26)
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discontinuation and disease progression. Our results
demonstrate an unfavorable risk/benefit profile of single
agent TAL, thus successful development of an anti-CD123
therapeutic approach for myeloid malignancies is likely to
require the addition of cytotoxic payloads like antibody
drug conjugates or the utilization of further synergistic
immune modalities such as CD123-specific chimeric anti-
gen receptor modified T- or NK cells in order to improve
potency.
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