Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47

Abstract

CD47 is highly expressed on various hematopoietic malignancies, and enables cancer cells to avoid immunosurveillance. Its ligand, thromobospondin-1 (TSP-1) is a multifunctional protein, and CD47/TSP-1 interactions promote tumor progression in various malignancies. In this study, we investigated roles of TSP-1 and CD47 in cutaneous T-cell lymphoma (CTCL). Flow cytometric analysis and immunohistochemistry showed that CTCL tumor cells and CTCL cell lines (Hut78, HH, and MyLa cells) overexpressed CD47 compared with normal CD4+ T cells. Overexpression of CD47 was partially induced by high c-Myc expression in CTCL tumor cells. TSP-1 mRNA expression levels in CTCL lesional skin were higher than those in normal skin and correlated with increased risk of disease-related death. Moreover, TSP-1 was expressed on CTCL tumor cells by immunohistochemistry. Serum soluble TSP-1 levels in patients with Sézary syndrome were significantly elevated. TSP-1 promotes proliferation and survival of CTCL tumor cells, which is inhibited by anti-CD47 neutralizing antibody or CD47 knockdown. Stimulation with TSP-1 also induces cell migration and in vivo growth. These effects were mediated by phosphorylation of ERK1/2 and AKT and expression of survivin. Collectively, our findings prompt a novel therapeutic approach to CTCL based on discovery that CD47/TSP-1 interactions play important roles in progression of CTCL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768–85.

    CAS  PubMed  Google Scholar 

  2. Whittaker S, Hoppe R, Prince HM. How I treat mycosis fungoides and Sézary syndrome. Blood. 2016;127:3142–53.

    CAS  PubMed  Google Scholar 

  3. Kamijo H, Miyagaki T, Shishido-Takahashi N, Nakajima R, Oka T, Suga H, et al. Aberrant CD137 ligand expression induced by GATA6 overexpression promotes tumor progression in cutaneous T-cell lymphoma. Blood. 2018;132:1922–35.

    CAS  PubMed  Google Scholar 

  4. Geskin LJ, Viragova S, Stolz DB, Fuschiotti P. Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation. Blood. 2015;125:2798–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 2012;24:225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288:2051–4.

    CAS  PubMed  Google Scholar 

  7. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rendtlew Danielsen JM, Knudsen LM, Dahl IM, Lodahl M, Rasmussen T. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br J Haematol. 2007;138:756–60.

    PubMed  Google Scholar 

  9. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 2011;71:1374–84.

    CAS  PubMed  Google Scholar 

  10. Willingham SB, Volkmer J, Gentles AJ, Sahoo D, Dalerba P. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci. 2012;109:6662–7.

    CAS  PubMed  Google Scholar 

  11. Folkes AS, Feng M, Zain JM, Abdulla F, Rosen ST, Querfeld C. Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr Opin Oncol. 2018;30:332–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer. 2017;76:100–9.

    CAS  PubMed  Google Scholar 

  13. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: Implications for anti-angiogenic therapies. Nat Rev Cancer. 2009;9:182–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang T, Sun L, Yuan X, Qiu H. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget. 2017;8:84546–58.

    PubMed  PubMed Central  Google Scholar 

  15. Jeanne A, Schneider C, Martiny L, Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol. 2015;6:252.

    PubMed  PubMed Central  Google Scholar 

  16. Borsotti P, Ghilardi C, Ostano P, Silini A, Dossi R, Pinessi D, et al. Thrombospondin-1 is part of a Slug-independent motility and metastatic program in cutaneous melanoma, in association with VEGFR-1 and FGF-2. Pigment Cell Melanoma Res. 2015;28:73–81.

    CAS  PubMed  Google Scholar 

  17. Wang TN, Qian XH, Granick MS, Solomon MP, Rothman VL, Berger DH, et al. Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res. 1996;63:39–43.

    CAS  PubMed  Google Scholar 

  18. Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, et al. B-RafV600E and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci. 2010;107:10649–54.

    CAS  PubMed  Google Scholar 

  19. Firlej V, Mathieu JRR, Gilbert C, Lemonnier L, Nakhlé J, Gallou-Kabani C, et al. Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res. 2011;71:7649–58.

    CAS  PubMed  Google Scholar 

  20. Hu C, Wen J, Gong L, Chen X, Wang J, Hu F, et al. Thrombospondin-1 promotes cell migration, invasion and lung metastasis of osteosarcoma through FAK dependent pathway. Oncotarget. 2017;8:75881–92.

    PubMed  PubMed Central  Google Scholar 

  21. Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo P-H, et al. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget. 2014;5:5782–97.

    PubMed  PubMed Central  Google Scholar 

  22. Sick E, Boukhari A, Deramaudt T, Rondé P, Bucher B, André P, et al. Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia. 2011;59:308–19.

    PubMed  Google Scholar 

  23. Takahashi N, Sugaya M, Suga H, Oka T, Kawaguchi M, Miyagaki T, et al. Thymic stromal chemokine TSLP Acts through Th2 cytokine production to induce cutaneous T-cell lymphoma. Cancer Res. 2016;76:6241–52.

    CAS  PubMed  Google Scholar 

  24. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352:227–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goswami M, Duvic M, Dougherty A, Ni X. Increased Twist expression in advanced stage of mycosis fungoides and Sézary syndrome. J Cutan Pathol. 2012;39:500–7.

    PubMed  PubMed Central  Google Scholar 

  26. Sipes JM, Krutzsch HC, Lawler J, Roberts DD. Cooperation between thrombospondin-1 type 1 repeat peptides and α(v)β3 integrin ligands to promote melanoma cell spreading and focal adhesion kinase phosphorylation. J Biol Chem. 1999;274:22755–62.

    CAS  PubMed  Google Scholar 

  27. Kazerounian S, Yee KO, Lawler J. Thrombospondins: from structure to therapeutics—thrombospondins in cancer. Cell Mol Life Sci. 2008;65:700–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim M-S, Oh YJ, Lee S, Kim JE, Kim KH, Chung JH. Ultraviolet radiation attenuates thrombospondin 1 expression via PI3K-Akt activation in human keratinocytes. Photochem Photobiol. 2006;82:645–50.

    CAS  PubMed  Google Scholar 

  29. Kakinuma T, Sugaya M, Nakamura K, Kaneko F, Wakugawa M, Matsushima K, et al. Thymus and activation-regulated chemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect the disease activity of mycosis fungoides. J Am Acad Dermatol. 2003;48:23–30.

    PubMed  Google Scholar 

  30. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood. 2005;105:1640–7.

    CAS  PubMed  Google Scholar 

  31. Hallermann C, Niermann C, Schulze H-J. Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol. 2007;78:260–3.

    PubMed  Google Scholar 

  32. Capriotti E, Vonderheid EC, Thoburn CJ, Wasik M, Bahler DW, Hess AD. Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk Lymphoma. 2008;49:1190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Grimbert P, Bouguermouh S, Baba N, Nakajima T, Allakhverdi Z, Braun D, et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+CD25- T cells in response to inflammation. J Immunol. 2006;177:3534–41.

    CAS  PubMed  Google Scholar 

  34. Wilson KE, Li Z, Kara M, Gardner KL, Roberts DD. Beta 1 integrin- and proteoglycan-mediated stimulation of T lymphoma cell adhesion and mitogen-activated protein kinase signaling by thrombospondin-1 and thrombospondin-1 peptides. J Immunol. 1999;163:3621–8.

    CAS  PubMed  Google Scholar 

  35. Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med. 2000;6:41–8.

    PubMed  Google Scholar 

  36. Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 2008;14:5000–5.

    CAS  PubMed  Google Scholar 

  37. Krejsgaard T, Kopp K, Ralfkiaer E, Willumsgaard AE, Eriksen KW, Labuda T, et al. A novel xenograft model of cutaneous T-cell lymphoma. Exp Dermatol. 2010;19:1096–102.

    PubMed  Google Scholar 

  38. Querfeld C, Thompson J, Taylor M, Pillai R, Johnson LDS, Catalano T, et al. A single direct intratumoral injection of TTI-621 (SIRPαFc) induces antitumor activity in patients with relapsed/refractory mycosis fungoides and Sézary syndrome: preliminary findings employing an immune checkpoint inhibitor blocking the CD47 “do not eat”. Blood. 2017;130:4076.

    Google Scholar 

  39. Kanavaros P, Ioannidou D, Tzardi M, Datseris G, Katsantonis J, Delidis G, et al. Mycosis fungoides: expression of C-myc p62 p53, bcl-2 and PCNA proteins and absence of association with Epstein-Barr virus. Pathol Res Pr. 1994;190:767–74.

    CAS  Google Scholar 

  40. Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: Implications for bone disease. Blood. 2009;114:3413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Suh EJ, Kabir MH, Kang UB, Lee JW, Yu J, Noh DY, et al. Comparative profiling of plasma proteome from breast cancer patients reveals thrombospondin-1 and BRWD3 as serological biomarkers. Exp Mol Med. 2012;44:36–44.

    CAS  PubMed  Google Scholar 

  42. Brand RE, Nolen BM, Zeh HJ, Allen PJ, Eloubeidi MA, Goldberg M, et al. Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res. 2011;17:805–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Loupakis F, Cremolini C, Fioravanti A, Orlandi P, Salvatore L, Masi G, et al. Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer. Br J Cancer. 2011;104:1262–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2:re3.

    PubMed  PubMed Central  Google Scholar 

  45. Lisby S, Baadsgaard O, Cooper KD, Hansen ER, Mehregan D, Thomsen K, et al. Phenotype, Ultrastructure, and Function of CD1+DR+Epidermal Cells that Express CD36 (OKM5) in Cutaneous T‐Cell Lymphoma. Scand J Immunol. 1990;32:111–20.

    CAS  PubMed  Google Scholar 

  46. Rath GM, Schneider C, Dedieu S, Rothhut B, Soula-Rothhut M, Ghoneim C, et al. The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochim Biophys Acta—Mol Cell Res. 2006;1763:1125–34.

    CAS  Google Scholar 

  47. Foss FM, Koc Y, Stetler-Stevenson MA, Nguyen DT, O’Brien MC, Turner R, et al. Costimulation of cutaneous T-cell lymphoma cells by interleukin-7 and interleukin-2: potential autocrine or paracrine effectors in the Sézary syndrome. J Clin Oncol. 1994;12:326–35.

    CAS  PubMed  Google Scholar 

  48. Döbbeling U, Dummer R, Laine E, Potoczna N, Qin JZ, Burg G. Interleukin-15 is an autocrine/paracrine viability factor for cutaneous T-cell lymphoma cells. Blood. 1998;92:252–8.

    PubMed  Google Scholar 

  49. Suga H, Sugaya M, Miyagaki T, Kawaguchi M, Fujita H, Asano Y, et al. The role of IL-32 in cutaneous t-cell lymphoma. J Invest Dermatol. 2014;134:1428–35.

    CAS  PubMed  Google Scholar 

  50. Paydas S, Ergin M, Erdogan S, Seydaoglu G, Yavuz S, Disel U. Thrombospondin-1 (TSP-1) and Survivin (S) expression in non-Hogkin’s lymphomas. Leuk Res. 2008;32:243–50.

    CAS  PubMed  Google Scholar 

  51. Schmidt SM, Schag K, Müller MR, Weck MM, Appel S, Kanz L, et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood. 2003;102:571–6.

    CAS  PubMed  Google Scholar 

  52. Yamamoto H, Ngan CY, Monden M. Cancer cells survive with survivin. Cancer Sci. 2008;99:1709–14.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Kazuyasu Fujii (Department of Dermatology, Kagoshima University, Kagoshima, Japan) for providing Hut78, HH, and MyLa cells. The authors thank Tamami Kaga for technical assistance. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan (16K19709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomitsu Miyagaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamijo, H., Miyagaki, T., Takahashi-Shishido, N. et al. Thrombospondin-1 promotes tumor progression in cutaneous T-cell lymphoma via CD47. Leukemia 34, 845–856 (2020). https://doi.org/10.1038/s41375-019-0622-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0622-6

This article is cited by

Search

Quick links