Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

The acetyltransferase GCN5 maintains ATRA-resistance in non-APL AML

A Correction to this article was published on 16 January 2020

This article has been updated

Abstract

To date, only one subtype of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL) can be effectively treated by differentiation therapy utilizing all-trans retinoic acid (ATRA). Non-APL AMLs are resistant to ATRA. Here we demonstrate that the acetyltransferase GCN5 contributes to ATRA resistance in non-APL AML via aberrant acetylation of histone 3 lysine 9 (H3K9ac) residues maintaining the expression of stemness and leukemia associated genes. We show that inhibition of GCN5 unlocks an ATRA-driven therapeutic response. This response is potentiated by coinhibition of the lysine demethylase LSD1, leading to differentiation in most non-APL AML. Induction of differentiation was not correlated to a specific AML subtype, cytogenetic, or mutational status. Our study shows a previously uncharacterized role of GCN5 in maintaining the immature state of leukemic blasts and identifies GCN5 as a therapeutic target in AML. The high efficacy of the combined epigenetic treatment with GCN5 and LSD1 inhibitors may enable the use of ATRA for differentiation therapy of non-APL AML. Furthermore, it supports a strategy of combined targeting of epigenetic factors to improve treatment, a concept potentially applicable for a broad range of malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data discussed in this publication were deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE124423.

Change history

  • 16 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Longo DL, Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373:1136–52.

    Article  CAS  Google Scholar 

  2. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21.

    Article  CAS  Google Scholar 

  3. de The H. Differentiation therapy revisited. Nat Rev Cancer. 2018;18:117–27.

    Article  CAS  Google Scholar 

  4. Schenk T, Stengel S, Zelent A. Unlocking the potential of retinoic acid in anticancer therapy. Br J Cancer. 2014;111:2039–45.

    Article  CAS  Google Scholar 

  5. Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA, et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteom. 2008;7:2019–27.

    Article  CAS  Google Scholar 

  6. Glasow A, Barrett A, Petrie K, Gupta R, Boix-Chornet M, Zhou DC, et al. DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood. 2008;111:2374–7.

    Article  CAS  Google Scholar 

  7. Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K, et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med. 2012;18:605–11.

    Article  CAS  Google Scholar 

  8. Smitheman KN, Severson TM, Rajapurkar SR, McCabe MT, Karpinich N, Foley J, et al. Lysine specific demethylase 1 inactivation enhances differentiation and promotes cytotoxic response when combined with all-trans retinoic acid in acute myeloid leukemia across subtypes. Haematologica. 2018;104:1156–67.

    Article  Google Scholar 

  9. Cusan M, Cai SF, Mohammad HP, Krivtsov A, Chramiec A, Loizou E, et al. LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPalpha-dependent enhancers in AML. Blood. 2018;131:1730–42.

    Article  CAS  Google Scholar 

  10. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 2012;21:473–87.

    Article  CAS  Google Scholar 

  11. Mueller-Tidow C. Phase I/II Trial of ATRA and TCP in Patients With Relapsed or Refractory AML and no Intensive Treatment is Possible. https://ClinicalTrials.gov/show/NCT02261779. 2014.

  12. Ross D. IMG-7289, With and Without ATRA, in Patients With Advanced Myeloid Malignancies. https://ClinicalTrials.gov/show/NCT02842827. 2016.

  13. Lübbert M. Study of Sensitization of Non-M3 AML Blasts to ATRA by Epigenetic Treatment With Tranylcypromine (TCP). https://ClinicalTrials.gov/show/NCT02717884. 2016.

  14. Zheng F. An Open-Label, Dose-Escalation/Dose-Expansion Safety Study of INCB059872 in Subjects With Advanced Malignancies. https://ClinicalTrials.gov/show/NCT02712905. 2016.

  15. Watts J. Phase 1 Study of TCP-ATRA for Adult Patients With AML and MDS. https://ClinicalTrials.gov/show/NCT02273102. 2014.

  16. Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL. Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem. 1999;274:5895–900.

    Article  CAS  Google Scholar 

  17. Kuo Y-M, Andrews AJ. Quantitating the Specificity and Selectivity of Gcn5-Mediated Acetylation of Histone H3. PLoS ONE. 2013;8:e54896.

    Article  CAS  Google Scholar 

  18. Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 2016;17:1193–205.

    Article  CAS  Google Scholar 

  19. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    Article  CAS  Google Scholar 

  20. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol. 2010;28:2529–37.

    Article  CAS  Google Scholar 

  21. Bagger FO, Sasivarevic D, Sohi SH, Laursen LG, Pundhir S, Sonderby CK, et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res. 2016;44(D1):D917–24.

    Article  CAS  Google Scholar 

  22. Biel M, Kretsovali A, Karatzali E, Papamatheakis J, Giannis A. Design, Synthesis, and Biological Evaluation of a Small‐Molecule Inhibitor of the Histone Acetyltransferase Gcn5. Angew Chem Int Ed. 2004;43:3974–6.

    Article  CAS  Google Scholar 

  23. Dalton WT Jr., Ahearn MJ, McCredie KB, Freireich EJ, Stass SA, et al. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood. 1988;71:242–7.

    Article  Google Scholar 

  24. Picot T, Aanei CM, Fayard A, Flandrin-Gresta P, Tondeur S, Gouttenoire M, et al. Expression of embryonic stem cell markers in acute myeloid leukemia. Tumour Biol. 2017;39:1010428317716629.

    Article  CAS  Google Scholar 

  25. Xu H, Huang S, Zhu X, Zhang W, Zhang X. FOXK1 promotes glioblastoma proliferation and metastasis through activation of Snail transcription. Exp Ther Med. 2018;15:3108–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell. 2011;146:697–708.

    Article  CAS  Google Scholar 

  27. Rice KL, Licht JD. HOX deregulation in acute myeloid leukemia. J Clin Investig. 2007;117:865–8.

    Article  CAS  Google Scholar 

  28. Santanach A, Blanco E, Jiang H, Molloy KR, Sanso M, LaCava J, et al. The Polycomb group protein CBX6 is an essential regulator of embryonic stem cell identity. Nat Commun. 2017;8:1235.

    Article  CAS  Google Scholar 

  29. Salvatori B, Iosue I, Mangiavacchi A, Loddo G, Padula F, Chiaretti S, et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis. 2012;3:e413.

    Article  CAS  Google Scholar 

  30. Puram RV, Kowalczyk MS, de Boer CG, Schneider RK, Miller PG, McConkey M, et al. Core circadian clock genes regulate leukemia stem cells in AML. Cell. 2016;165:303–16.

    Article  CAS  Google Scholar 

  31. Ramirez RN, El-Ali NC, Mager MA, Wyman D, Conesa A, Mortazavi A. Dynamic gene regulatory networks of human myeloid differentiation. Cell Syst. 2017;4:416–29. e413.

    Article  CAS  Google Scholar 

  32. Vegi NM, Klappacher J, Oswald F, Mulaw MA, Mandoli A, Thiel VN, et al. MEIS2 is an oncogenic partner in AML1-ETO-positive AML. Cell Rep. 2016;16:498–507.

    Article  CAS  Google Scholar 

  33. Zhu J, Zhang Y, Joe GJ, Pompetti R, Emerson SG. NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proc Natl Acad Sci USA. 2005;102:11728–33.

    Article  CAS  Google Scholar 

  34. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A, et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 2006;20:2147–54.

    Article  CAS  Google Scholar 

  35. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

    Article  CAS  Google Scholar 

  36. Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh YC, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res. 2005;11:1372–9.

    Article  CAS  Google Scholar 

  37. Martelli MP, Pettirossi V, Thiede C, Bonifacio E, Mezzasoma F, Cecchini D, et al. CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood. 2010;116:3907–22.

    Article  CAS  Google Scholar 

  38. Boutzen H, Saland E, Larrue C, de Toni F, Gales L, Castelli FA, et al. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J Exp Med. 2016;213:483–97.

    Article  CAS  Google Scholar 

  39. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437:436–9.

    Article  CAS  Google Scholar 

  40. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319:202–6.

    Article  CAS  Google Scholar 

  41. Bararia D, Kwok H, Welner RS, Numata A, Sárosi MB, Yang H, et al. Acetylation of C/EBPα inhibits its granulopoietic function. Nat Commun. 2016;7:10968.

    Article  CAS  Google Scholar 

  42. Maiques-Diaz A, Spencer GJ, Lynch JT, Ciceri F, Williams EL, Amaral FMR, et al. Enhancer activation by pharmacologic displacement of lsd1 from gfi1 induces differentiation in acute myeloid leukemia. Cell Rep. 2018;22:3641–59.

    Article  CAS  Google Scholar 

  43. Cain C. AML takes LSD1. Science-Business eXchange. 2012;5:352.

    Article  Google Scholar 

  44. Fu X, Zhang P, Yu B. Advances toward LSD1 inhibitors for cancer therapy. Future Med Chem. 2017;9:1227–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Maren Godmann, Berit Jungnickel, and Christian Kosan for their advice during the project. We thank Ivonne Goerlich and Cornelia Luge for technical assistance in next-generation sequencing, Carl Crodel, Kai Sporkmann, and Tobias Rachow for their help collecting patients’ material and Carl Götze for his advice in stochastic analyses. MK and TS were supported by the German Research Council (SCHE1909/2–1). AB was supported by funding from the Foundation “Else Kröner-Fresenius-Stiftung”. FHH was supported by grants of the Thuringian state program ProExzellenz (RegenerAging—FSU-I-03/14) of the Thuringian Ministry for Research and in part by the German Research Council (DFG, HE6233/6–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Schenk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahl, M., Brioli, A., Bens, M. et al. The acetyltransferase GCN5 maintains ATRA-resistance in non-APL AML. Leukemia 33, 2628–2639 (2019). https://doi.org/10.1038/s41375-019-0581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0581-y

Search

Quick links