Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL

Abstract

Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental non-malignant cells for survival. We compared the transcriptomes of primary CLL cells cocultured or not with protective bone marrow stromal cells (BMSCs) and found that oxidative phosphorylation, mitochondrial function, and hypoxic signaling undergo most significant dysregulation in non-protected CLL cells, with the changes peaking at 6–8 h, directly before induction of apoptosis. A subset of CLL patients displayed a gene expression signature resembling that of cocultured CLL cells and had significantly worse progression-free and overall survival. To identify drugs blocking BMSC-mediated support, we compared the relevant transcriptomic changes to the Connectivity Map database. Correlation was found with the transcriptomic signatures of the cardiac glycoside ouabain and of the ipecac alkaloids emetine and cephaeline. These compounds were highly active against protected primary CLL cells (relative IC50's 287, 190, and 35 nM, respectively) and acted by repressing HIF-1α and disturbing intracellular redox homeostasis. We tested emetine in a murine model of CLL and observed decreased CLL cells in peripheral blood, spleen, and bone marrow, recovery of hematological parameters and doubling of median survival (31.5 vs. 15 days, P = 0.0001). Pathways regulating redox homeostasis are thus therapeutically targetable mediators of microenvironmental support in CLL cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shustik C, Bence-Bruckler I, Delage R, Owen CJ, Toze CL, Coutre S. Advances in the treatment of relapsed/refractory chronic lymphocytic leukemia. Ann Hematol. 2017;96:1185–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in chronic lymphocytic leukemia: implications for disease pathogenesis and treatment. Biochim Biophys Acta. 2016;1863:401–413.

    CAS  PubMed  Google Scholar 

  3. Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood. 2016;127:279–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhattacharya N, Diener S, Idler IS, Rauen J, Habe S, Busch H, et al. Nurse-like cells show deregulated expression of genes involved in immunocompetence. Br J Haematol. 2011;154:349–56.

    CAS  PubMed  Google Scholar 

  5. Burger JA. The CLL cell microenvironment. Adv Exp Med Biol. 2013;792:25–45.

    CAS  PubMed  Google Scholar 

  6. Burkle A, Niedermeier M, Schmitt-Graff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007;110:3316–25.

    PubMed  Google Scholar 

  7. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+T cells by producing CCL22. Eur J Immunol. 2002;32:1403–13.

    CAS  PubMed  Google Scholar 

  8. Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ, et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood. 2008;111:5173–81.

    CAS  PubMed  Google Scholar 

  9. Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematol/Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2011;2011:96–103.

    Google Scholar 

  10. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118:4313–20.

    CAS  PubMed  Google Scholar 

  11. Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. New Engl J Med. 2014;371:213–23.

    PubMed  Google Scholar 

  12. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. New Engl J Med. 2014;370:997–1007.

    CAS  PubMed  Google Scholar 

  13. Chan DA, Sutphin PD, Yen SE, Giaccia AJ. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol. 2005;25:6415–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54.

    CAS  PubMed  Google Scholar 

  16. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.

    CAS  PubMed  Google Scholar 

  17. Iorio F, Tagliaferri R, di Bernardo D. Identifying network of drug mode of action by gene expression profiling. J Comput Biol: J Comput Mol Cell Biol. 2009;16:241–51.

    CAS  Google Scholar 

  18. Valsecchi R, Coltella N, Belloni D, Ponente M, Ten Hacken E, Scielzo C, et al. HIF-1alpha regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood. 2016;127:1987–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, et al. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem. 2009;284:31532–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Auletta AE, Gery AM, Mead JA. Influence of antileukemic (L1210) treatment schedule on disposition of (minus)-emetine hydrochloride (NSC 33669) in normal and leukemic mice. Cancer Res. 1974;34:1581–5.

    CAS  PubMed  Google Scholar 

  21. Johnson RK, Jondorf WR. Some inhibitory effects of (–)-emetine on growth of Ehrlich ascites carcinoma. Biochem J. 1974;140:87–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sivina M, Hartmann E, Vasyutina E, Boucas JM, Breuer A, Keating MJ, et al. Stromal cells modulate TCL1 expression, interacting AP-1 components and TCL1-targeting micro-RNAs in chronic lymphocytic leukemia. Leukemia. 2012;26:1812–20.

    CAS  PubMed  Google Scholar 

  24. Edelmann J, Klein-Hitpass L, Carpinteiro A, Fuhrer A, Sellmann L, Stilgenbauer S, et al. Bone marrow fibroblasts induce expression of PI3K/NF-kappaB pathway genes and a pro-angiogenic phenotype in CLL cells. Leuk Res. 2008;32:1565–72.

    CAS  PubMed  Google Scholar 

  25. Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M. Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica. 2011;96:408–16.

    CAS  PubMed  Google Scholar 

  26. Carew JS, Nawrocki ST, Xu RH, Dunner K, McConkey DJ, Wierda WG, et al. Increased mitochondrial biogenesis in primary leukemia cells: the role of endogenous nitric oxide and impact on sensitivity to fludarabine. Leukemia. 2004;18:1934–40.

    CAS  PubMed  Google Scholar 

  27. Jitschin R, Hofmann AD, Bruns H, Giessl A, Bricks J, Berger J, et al. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood. 2014;123:2663–72.

    CAS  PubMed  Google Scholar 

  28. Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol. 2012;14:276–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jitschin R, Braun M, Qorraj M, Saul D, Le Blanc K, Zenz T, et al. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood. 2015;125:3432–6.

    CAS  PubMed  Google Scholar 

  30. Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem. 2004;279:41975–84.

    CAS  PubMed  Google Scholar 

  31. Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol. 2017;56:503–15.

    CAS  PubMed  Google Scholar 

  32. Perne A, Muellner MK, Steinrueck M, Craig-Mueller N, Mayerhofer J, Schwarzinger I, et al. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis. PLoS ONE. 2009;4:e8292.

    PubMed  PubMed Central  Google Scholar 

  33. Grollman AP. Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J Biol Chem. 1968;243:4089–94.

    CAS  PubMed  Google Scholar 

  34. Stenkvist B, Bengtsson E, Dahlqvist B, Eriksson O, Jarkrans T, Nordin B. Cardiac glycosides and breast cancer, revisited. New Engl J Med. 1982;306:484.

    CAS  PubMed  Google Scholar 

  35. Haux J, Klepp O, Spigset O, Tretli S. Digitoxin medication and cancer; case control and internal dose-response studies. BMC Cancer. 2001;1:11.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Johansson S, Lindholm P, Gullbo J, Larsson R, Bohlin L, Claeson P. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anti-cancer Drugs. 2001;12:475–83.

    CAS  PubMed  Google Scholar 

  37. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P. Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood. 2003;101:4098–104.

    CAS  PubMed  Google Scholar 

  38. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. PNAS. 2008;105:19579–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Howard AN, Bridges KA, Meyn RE, Chandra J. ABT-737, a BH3 mimetic, induces glutathione depletion and oxidative stress. Cancer Chemother Pharmacol. 2009;65:41–54.

    CAS  PubMed  Google Scholar 

  40. Wilkins HM, Marquardt K, Lash LH, Linseman DA. Bcl-2 is a novel interacting partner for the 2-oxoglutarate carrier and a key regulator of mitochondrial glutathione. Free Radic Biol Med. 2012;52:410–9.

    CAS  PubMed  Google Scholar 

  41. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, Linseman DA. Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem. 2007;282:29296–304.

    CAS  PubMed  Google Scholar 

  42. Simonetti G, Bertilaccio MT, Ghia P, Klein U. Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy. Blood. 2014;124:1010–9.

    CAS  PubMed  Google Scholar 

  43. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126:203–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jondorf WR, Abbott BJ, Greenberg NH, Mead JA. Increased lifespan of leukemic mice treated with drugs related to (-)-emetine. Chemotherapy. 1971;16:109–29.

    CAS  PubMed  Google Scholar 

  45. Boon-Unge K, Yu Q, Zou T, Zhou A, Govitrapong P, Zhou J. Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. Chem Biol. 2007;14:1386–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Akinboye ES, Bakare O. Biological activities of emetine. Open Nat Prod J. 2011;4:8–15.

    CAS  Google Scholar 

  47. Moller M, Wink M. Characteristics of apoptosis induction by the alkaloid emetine in human tumour cell lines. Planta Med. 2007;73:1389–96.

    PubMed  Google Scholar 

  48. Gupta RS, Chopra A, Stetsko DK. Cellular basis for the species differences in sensitivity to cardiac glycosides (digitalis). J Cell Physiol. 1986;127:197–206.

    CAS  PubMed  Google Scholar 

  49. Calderon-Montano JM, Burgos-Moron E, Lopez-Lazaro M. The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact. Oncogene. 2014;33:2947–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Fabienne McClanahan (Barts Cancer Institute, Queen Mary University of London, UK) provided precious advice regarding the use of the in vivo disease model. The authors are immensely thankful also to Linda Jannetti, Sandra Richter, and Daniela Steinbrecher for their invaluable help in conducting the animal experiments, as well as to Karin Müller, Ellen Scheidhauer, and Nina Urban (all at the Department of Internal Medicine III, University Clinic Ulm) for the excellent technical assistance. In addition, we would like to thank the patients for generous donation of their blood samples. This work was supported by grants from the Deutsche José Carreras Leukämie-Stiftung (DJCLS 14R/2016), the Virtual Helmholtz Institute “Resistance against Apoptotis and Therapy” (VH-VI-404), DFG D-A-CH (ME 3667/3-1), the DFG SFB1074 projects B1/B2, and the Else Kröner Fresenius Stiftung (2012_A146). VC would like to thank for the support of the International Graduate School in Molecular Medicine Ulm at Ulm University, Germany.

Funding

D.M. secured financial support for the study through grants from the Deutsche José Carreras Leukämie-Stiftung (DJCLS 14R/2016), the Virtual Helmholtz Institute “Resistance against Apoptotis and Therapy” (VH-VI-404), DFG D-A-CH (ME 3667/3-1), the DFG SFB1074 projects B1/B2, and the Else Kröner Fresenius Stiftung (2012_A146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mertens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yosifov, D.Y., Idler, I., Bhattacharya, N. et al. Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia 34, 115–127 (2020). https://doi.org/10.1038/s41375-019-0513-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0513-x

This article is cited by

Search

Quick links