Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoma

Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas

Abstract

MYC-driven lymphomas, especially those with concurrent MYC and BCL2 dysregulation, are currently a challenge in clinical practice due to rapid disease progression, resistance to standard chemotherapy, and high risk of refractory disease. MYC plays a central role by coordinating hyperactive protein synthesis with upregulated transcription in order to support rapid proliferation of tumor cells. Translation initiation inhibitor rocaglates have been identified as the most potent drugs in MYC-driven lymphomas as they efficiently inhibit MYC expression and tumor cell viability. We found that this class of compounds can overcome eIF4A abundance by stabilizing target mRNA–eIF4A interaction that directly prevents translation. Proteome-wide quantification demonstrated selective repression of multiple critical oncoproteins in addition to MYC in B-cell lymphoma including NEK2, MCL1, AURKA, PLK1, and several transcription factors that are generally considered undruggable. Finally, (−)-SDS-1-021, the most promising synthetic rocaglate, was confirmed to be highly potent as a single agent, and displayed significant synergy with the BCL2 inhibitor ABT199 in inhibiting tumor growth and survival in primary lymphoma cells in vitro and in patient-derived xenograft mouse models. Overall, our findings support the strategy of using rocaglates to target oncoprotein synthesis in MYC-driven lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122:3884–91.

    CAS  PubMed  Google Scholar 

  2. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511:488–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Scott DW, King RL, Staiger AM, Ben-Neriah S, Jiang A, Horn H, et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood. 2018;131:2060–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114:3533–7.

    CAS  PubMed  Google Scholar 

  6. Barrans S, Crouch S, Smith A, Turner K, Owen R, Patmore R, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28:3360–5.

    CAS  PubMed  Google Scholar 

  7. Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans HC, Boerma EJ, et al. Double-hit B-cell lymphomas. Blood. 2011;117:2319–31.

    CAS  PubMed  Google Scholar 

  8. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarkozy C, Traverse-Glehen A, Coiffier B. Double-hit and double-protein-expression lymphomas: aggressive and refractory lymphomas. Lancet Oncol. 2015;16:e555–e67.

    CAS  PubMed  Google Scholar 

  10. Johnson NA, Savage KJ, Ludkovski O, Ben-Neriah S, Woods R, Steidl C, et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood. 2009;114:2273–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS, et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30:3460–7.

    CAS  PubMed  Google Scholar 

  12. Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28:1776–87.

    CAS  PubMed  Google Scholar 

  13. Stathis A, Zucca E, Bekradda M, Gomez-Roca C, Delord JP, de La Motte Rouge T, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 2016;6:492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pawar A, Gollavilli PN, Wang S, Asangani IA. Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castration-resistant prostate cancer. Cell Rep. 2018;22:2236–45.

    CAS  PubMed  Google Scholar 

  15. Kurimchak AM, Shelton C, Duncan KE, Johnson KJ, Brown J, O’Brien S, et al. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep. 2016;16:1273–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E, et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature. 2008;456:971–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015;14:261–78.

    CAS  PubMed  Google Scholar 

  18. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.

    CAS  PubMed  Google Scholar 

  19. Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley Inter Rev Rna. 2011;2:277–98.

    CAS  Google Scholar 

  20. Ravitz MJ, Chen L, Lynch M, Schmidt EV. c-myc repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Cancer Res. 2007;67:11209–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Elkon R, Loayza-Puch F, Korkmaz G, Lopes R, van Breugel PC, Bleijerveld OB, et al. Myc coordinates transcription and translation to enhance transformation and suppress invasiveness. EMBO Rep. 2015;16:1723–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lucas DM, Edwards RB, Lozanski G, West DA, Shin JD, Vargo MA, et al. The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo. Blood. 2009;113:4656–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Manier S, Huynh D, Shen YJ, Zhou J, Yusufzai T, Salem KZ, et al. Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Sci Transl Med. 2017;9:389.

    Google Scholar 

  24. Pan L, Woodard JL, Lucas DM, Fuchs JR, Kinghorn AD. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat Prod Rep. 2014;31:924–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest. 2008;118:2651–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Huttenrauch M, Kuspert M, et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov. 2015;5:768–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Robert F, Roman W, Bramoulle A, Fellmann C, Roulston A, Shustik C, et al. Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma. Proc Natl Acad Sci USA. 2014;111:13421–6.

    CAS  PubMed  Google Scholar 

  28. Rong L, Livingstone M, Sukarieh R, Petroulakis E, Gingras AC, Crosby K, et al. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs. RNA. 2008;14:1318–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettersson F, Del Rincon SV, Miller WH Jr.. Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opin Ther Targets. 2014;18:1035–48.

    CAS  PubMed  Google Scholar 

  30. Yang T, Buchan HL, Townsend KJ, Craig RWMCL-1. a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol. 1996;166:523–36.

    CAS  PubMed  Google Scholar 

  31. Raynaud FI, Orr RM, Goddard PM, Lacey HA, Lancashire H, Judson IR, et al. Pharmacokinetics of G3139, a phosphorothioate oligodeoxynucleotide antisense to bcl-2, after intravenous administration or continuous subcutaneous infusion to mice. J Pharm Exp Ther. 1997;281:420–7.

    CAS  Google Scholar 

  32. Pestova TV, Shatsky IN, Hellen CU. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol. 1996;16:6870–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5’ secondary structure. RNA. 2001;7:382–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chu J, Galicia-Vazquez G, Cencic R, Mills JR, Katigbak A, Porco JA Jr., et al. CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A. Cell Rep. 2016;15:2340–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelletier J, Graff J, Ruggero D, Sonenberg N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 2015;75:250–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, et al. The Translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell. 2019;73:P738–748.E9.

    PubMed  Google Scholar 

  37. Iwasaki S, Floor SN, Ingolia NT. Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature. 2016;534:558–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chambers JM, Lindqvist LM, Webb A, Huang DC, Savage GP, Rizzacasa MA. Synthesis of biotinylated episilvestrol: highly selective targeting of the translation factors eIF4AI/II. Org Lett. 2013;15:1406–9.

    CAS  PubMed  Google Scholar 

  39. Andreou AZ, Klostermeier D. The DEAD-box helicase eIF4A: paradigm or the odd one out? RNA Biol. 2013;10:19–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Oblinger JL, Burns SS, Akhmametyeva EM, Huang J, Pan L, Ren Y, et al. Components of the eIF4F complex are potential therapeutic targets for malignant peripheral nerve sheath tumors and vestibular schwannomas. Neuro Oncol. 2016;18:1265–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Galicia-Vazquez G, Cencic R, Robert F, Agenor AQ, Pelletier J. A cellular response linking eIF4AI activity to eIF4AII transcription. RNA. 2012;18:1373–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chu J, Cencic R, Wang W, Porco JA Jr., Pelletier J. Translation inhibition by rocaglates is independent of eIF4E phosphorylation status. Mol cancer Ther. 2016;15:136–41.

    CAS  PubMed  Google Scholar 

  43. den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A, Hoellein A, et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood. 2010;116:1498–505.

    Google Scholar 

  44. Ren Y, Bi C, Zhao X, Lwin T, Wang C, Yuan J, et al. PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas. J Clin Invest. 2018;128:5517–30.

    PubMed  PubMed Central  Google Scholar 

  45. Malka-Mahieu H, Newman M, Desaubry L, Robert C, Vagner S. Molecular pathways: the eIF4F translation initiation complex-new opportunities for cancer treatment. Clin Cancer Res. 2017;23:21–5.

    CAS  PubMed  Google Scholar 

  46. Lin CJ, Malina A, Pelletier J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res. 2009;69:7491–4.

    CAS  PubMed  Google Scholar 

  47. Cope CL, Gilley R, Balmanno K, Sale MJ, Howarth KD, Hampson M, et al. Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J Cell Sci. 2014;127(Pt 4):788–800.

    CAS  PubMed  Google Scholar 

  48. Duncan R, Hershey JW. Identification and quantitation of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem. 1983;258:7228–35.

    CAS  PubMed  Google Scholar 

  49. Peters TL, Tillotson J, Yeomans AM, Wilmore S, Lemm E, Jimenez-Romero C, et al. Target-based screening against eIF4A1 reveals the marine natural product elatol as a novel inhibitor of translation initiation with in vivo antitumor activity. Clin Cancer Res. 2018;24:4256–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cencic R, Pelletier J. Hippuristanol - a potent steroid inhibitor of eukaryotic initiation factor 4A. Transl (Austin). 2016;4:e1137381.

    Google Scholar 

  51. Bonetti P, Testoni M, Scandurra M, Ponzoni M, Piva R, Mensah AA, et al. Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma. Blood. 2013;122:2233–41.

    CAS  PubMed  Google Scholar 

  52. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med. 2014;4. pii: a014282.

  53. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014;123:2451–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Basso K, Dalla-Favera R. BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol. 2010;105:193–210.

    CAS  PubMed  Google Scholar 

  55. Bi C, Zhang X, Lu T, Zhang X, Wang X, Meng B, et al. Inhibition of 4EBP phosphorylation mediates the cytotoxic effect of mechanistic target of rapamycin kinase inhibitors in aggressive B-cell lymphomas. Haematologica. 2017;102:755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yueh H, Gao Q, Porco JA Jr., Beeler AB. A photochemical flow reactor for large scale syntheses of aglain and rocaglate natural product analogues. Bioorg Med Chem. 2017;25:6197–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stone SD, Lajkiewicz NJ, Whitesell L, Hilmy A, Porco JA Jr. Biomimetic kinetic resolution: highly enantio- and diastereoselective transfer hydrogenation of aglain ketones to access flavagline natural products. J Am Chem Soc. 2015;137:525–30.

    CAS  PubMed  Google Scholar 

  58. Rodrigo CM, Cencic R, Roche SP, Pelletier J, Porco JA. Synthesis of rocaglamide hydroxamates and related compounds as eukaryotic translation inhibitors: synthetic and biological studies. J Med Chem. 2012;55:558–62.

    CAS  PubMed  Google Scholar 

  59. Wang W, Cencic R, Whitesell L, Pelletier J, Porco JA Jr. Synthesis of Aza-rocaglates via ESIPT-mediated (3+2) photocycloaddition. Chemistry. 2016;22:12006–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Saradhi UV, Gupta SV, Chiu M, Wang J, Ling Y, Liu Z, et al. Characterization of silvestrol pharmacokinetics in mice using liquid chromatography-tandem mass spectrometry. AAPS J. 2011;13:347–56.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Jerry Pelletier at the McGill University for his valuable advice and comments to the paper. We thank Joseph Gera (Greater Los Angeles VA Healthcare System, CA, USA) for providing us the pRF plasmid. We thank Dirk Eick (Helmholtz Zentrum München, Munich, Germany) for providing us P493-6 cell line. We thank John Chan (City of Hope, CA, USA) for providing NKYS cell line. We thank Richard J. Ford (MD. Anderson, TX, USA) for providing CJ cell line. We thank Sophie Alvarez and Michael Naldrett at the Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, supported by the Nebraska Research Initiative for performing the proteomics analysis. We sincerely thank Wang Yuzhuo (Vancouver, British Columbia) at the Living Tumor Laboratory for providing the MYC/BCL2 double expression PDX model. We thank David M. Weinstock and Dana-Farber’s bank of patient-derived tumor xenografts (Dana-Farber Cancer Institute, MA, USA) for providing the MYC/BCL2 double-translocation PDX line.

Funding

This study was supported in part by a pilot grant and a lymphoma program grant from the Fred & Pamela Buffett Cancer Center at UNMC (to KF), the National Cancer Institute (P30 CA036727), Nebraska Department of Health and Human Services (LB506-18-22 to KF), and the National Institutes of Health (R35 GM118173 and R24 GM111625 to JAP, Jr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Bi, C., Lu, T. et al. Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas. Leukemia 34, 138–150 (2020). https://doi.org/10.1038/s41375-019-0503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0503-z

This article is cited by

Search

Quick links