Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular targets for therapy

The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma

Subjects

Abstract

Over the last few years, a detailed map of genetic and epigenetic lesions that underlie multiple myeloma (MM) has been created. Regulation of microRNA (miR)-dependent gene expression and mRNA splicing play significant roles in MM pathogenesis; however, to date an interplay between these processes is not yet delineated. Here we investigated miR-mediated regulation of splicing networks at the transcriptome level. Our studies show that a significant number (78%) of miRs which are either up- or down-regulated in patient CD138+ MM cells, but not in healthy donors (HD) CD138+ plasma cells (PC), target genes involved in early stages of pre-mRNA splicing. We also identified deregulated miRs that target core splicing factors (SF) and modifiers (SM, enhancers/silencers) which cause altered splicing in MM. Our studies suggest that Let-7f, in combination other miRs which are frequently and significantly deregulated in patients with overt MM, targets genes that regulate intron excision. Importantly, deregulated expression of certain miRs in MM promote increased intron retention, a novel characteristic of the MM genome, by inducing deregulated expression of the genes that regulate the splicing network. Our studies, therefore, provide the rationale for therapeutically targeting deregulated miRs to reverse aberrant splicing and improve patient outcome in MM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    Article  PubMed  CAS  Google Scholar 

  2. Mitchell JS, Li N, Weinhold N, Forsti A, Ali M, van Duin M, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marchesini M, Ogoti Y, Fiorini E, Aktas Samur A, Nezi L, D’Anca M, et al. ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell. 2017;32:88–100. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Went M, Sud A, Forsti A, Halvarsson BM, Weinhold N, Kimber S, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9:3707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Robiou du Pont S, Cleynen A, Fontan C, Attal M, Munshi N, Corre J, et al. Genomics of multiple myeloma. J Clin Oncol. 2017;35:963–7.

    Article  PubMed  Google Scholar 

  6. Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Prim. 2017;3:17046.

    Article  PubMed  Google Scholar 

  7. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20:5–20.

    Article  CAS  Google Scholar 

  8. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Croce CM. MicroRNA dysregulation to identify novel therapeutic targets. Curr Top Microbiol Immunol. 2017;407:191–203.

    PubMed  Google Scholar 

  10. Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med. 2010;16:257–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhou Y, Chen L, Barlogie B, Stephens O, Wu X, Williams DR, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA. 2010;107:7904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105:12885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood. 2009;113:6669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23:862–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murray MY, Rushworth SA, Zaitseva L, Bowles KM, Macewan DJ. Attenuation of dexamethasone-induced cell death in multiple myeloma is mediated by miR-125b expression. Cell Cycle. 2013;12:2144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Martino MT, Leone E, Amodio N, Foresta U, Lionetti M, Pitari MR, et al. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res. 2012;18:6260–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17:1298–307.

    Article  CAS  PubMed  Google Scholar 

  18. Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008;68:10094–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development. Cancer Cell. 2016;30:349–51.

    Article  CAS  PubMed  Google Scholar 

  20. Chiang Y, Song Y, Wang Z, Liu Z, Gao P, Liang J, et al. microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer. Exp Ther Med. 2012;3:560–6.

    Article  CAS  PubMed  Google Scholar 

  21. Khella HW, Bakhet M, Allo G, Jewett MA, Girgis AH, Latif A, et al. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma. Carcinogenesis. 2013;34:2231–9.

    Article  CAS  PubMed  Google Scholar 

  22. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.

    Article  PubMed  CAS  Google Scholar 

  23. Manier S, Powers JT, Sacco A, Glavey SV, Huynh D, Reagan MR, et al. The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma. Leukemia. 2017;31:853–60.

    Article  CAS  PubMed  Google Scholar 

  24. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D, Santo L, et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood. 2012;119:5772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szalat R, Avet-Loiseau H, Munshi NC. Gene expression profiles in myeloma: ready for the real world? Clin Cancer Res. 2016;22:5434–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16; q32)-positive multiple myeloma patients. Blood. 2005;105:4060–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adamia S, Reiman T, Crainie M, Mant MJ, Belch AR, Pilarski LM. Intronic splicing of hyaluronan synthase 1 (HAS1): a biologically relevant indicator of poor outcome in multiple myeloma. Blood. 2005;105:4836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kriangkum J, Warkentin A, Belch AR, Pilarski LM. Alteration of introns in a hyaluronan synthase 1 (HAS1) minigene convert Pre-mRNA [corrected] splicing to the aberrant pattern in multiple myeloma (MM): MM patients harbor similar changes. PLoS ONE. 2013;8:e53469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adamia S, Kriangkum J, Belch AR, Pilarski LM. Aberrant posttranscriptional processing of hyaluronan synthase 1 in malignant transformation and tumor progression. Adv cancer Res. 2014;123:67–94.

    Article  CAS  PubMed  Google Scholar 

  30. Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M, Carrasco DE, et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell. 2007;11:349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, et al. In multiple myeloma, t(4;14)(p16; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520–9.

    Article  CAS  PubMed  Google Scholar 

  32. Dring AM, Davies FE, Fenton JA, Roddam PL, Scott K, Gonzalez D, et al. A global expression-based analysis of the consequences of the t(4;14) translocation in myeloma. Clin Cancer Res. 2004;10:5692–701.

    Article  CAS  PubMed  Google Scholar 

  33. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92:3025–34.

    Article  CAS  PubMed  Google Scholar 

  34. Maxwell CA, Rasmussen E, Zhan F, Keats JJ, Adamia S, Strachan E, et al. RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood. 2004;104:1151–8.

    Article  CAS  PubMed  Google Scholar 

  35. Naim Rashid SM, Magrangeas Florence, Samur MehmetKemal, Clynen Alice, Sperling Adam, Tai Yu-Tzu, et al. Alternative Splicing Is a Frequent Event and Impacts Clinical Outcome in Myeloma: A Large RNA-Seq Data Analysis of Newly-Diagnosed Myeloma Patients. Blood. 2014;124:638.

    Article  Google Scholar 

  36. Samur AA, Samur MK, Minvielle S, Magrangeas F, Fulciniti M, Szalat R, et al. A detailed alternate splicing landscape in multiple myeloma with significant potential biological and clinical implications. The American Society of Hematology: Blood. 2016;128:356.

    Article  Google Scholar 

  37. Munshi NC, Avet-Loiseau H. Genomics in multiple myeloma. Clin Cancer Res. 2011;17:1234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPathv3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Article  PubMed  CAS  Google Scholar 

  40. Jacob AG, Smith CWJ. Intron retention as a component of regulated gene expression programs. Hum Genet. 2017;136:1043–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou MY, Black DL. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol. 2000;20:7463–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson F, Jackson RJ, Smith CW. Expression of human nPTB is limited by extreme suboptimal codon content. PLoS ONE. 2008;3:e1801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Caracciolo D, Montesano M, Altomare E, Scionti F, Di Martino MT, Tagliaferri P, et al. The potential role of miRNAs in multiple myeloma therapy. Expert Rev Hematol. 2018;11:793–803.

    Article  CAS  PubMed  Google Scholar 

  44. Macauda A, Calvetti D, Maccari G, Hemminki K, Forsti A, Goldschmidt H, et al. Identification of miRSNPs associated with the risk of multiple myeloma. Int J Cancer. 2017;140:526–34.

    Article  CAS  PubMed  Google Scholar 

  45. Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol. 2013;774:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol. 2017;18:655–70.

    Article  CAS  PubMed  Google Scholar 

  47. Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol. 2017;24:791–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol. 2017;18:637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA. 2008;14:802–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan LY, Whitfield P, Llorian M, Monzon-Casanova E, Diaz-Munoz MD, Turner M, et al. Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation. Nucleic Acids Res. 2015;43:5586–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Min H, Turck CW, Nikolic JM, Black DL. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 1997;11:1023–36.

    Article  CAS  PubMed  Google Scholar 

  52. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature. 2009;459:1010–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jimeno-Gonzalez S, Reyes JC. Chromatin structure and pre-mRNA processing work together. Transcription. 2016;7:63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the PO1-78378. SA was supported by IFM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil C. Munshi or Kenneth C. Anderson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamia, S., Abiatari, I., Amin, S.B. et al. The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia 34, 167–179 (2020). https://doi.org/10.1038/s41375-019-0498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0498-5

This article is cited by

Search

Quick links