In acute myeloid leukemia (AML), novel therapies are needed to target not only the rapidly dividing AML blasts but also the distinct population of leukemia stem cells (LSCs), which have abnormal self-renewal capacity and increased chemotherapy resistance. Elucidation of the expression and function of deregulated genes in LSCs is critical to specifically target LSCs and may consequently lead to improving outcomes of AML patients. Here, we correlated long non-coding RNA (lncRNA) expression profiles obtained from two RNA-seq datasets of 375 younger (aged <60 years) 76 older (≥60 years) adults with cytogenetically normal AML with a ‘core enriched’ (CE) gene expression signature (GES) associated with LSCs. We identified a LSC-specific signature of 111 lncRNAs that correlated strongly with the CE-GES. Among the top upregulated LSC-associated lncRNAs, we identified the lncRNA DANCR. Further experiments confirmed that DANCR is upregulated in functionally validated LSC-enriched populations. DANCR knock-down in LSCs resulted in decreased stem-cell renewal and quiescence. Furthermore, we showed that targeting Dancr in vivo using a primary murine model of AML (expressing both Mll partial tandem duplication/Flt3 internal tandem duplication) prolonged the survival of mice after serial transplantation. Our data suggest that LSCs have a distinct lncRNA signature with functional relevance and therapeutic potential.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Döhner H, Estey E, Grimwade D, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74.

  2. 2.

    Mrózek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004;18:115–36.

  3. 3.

    Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.

  4. 4.

    Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

  5. 5.

    Metzeler KH, Maharry K, Kohlschmidt J, Volinia S, Mrózek K, Becker H, et al. A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia. Leukemia. 2013;27:2023–31.

  6. 6.

    Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

  7. 7.

    Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793–807.

  8. 8.

    Dorrance AM, Neviani P, Ferenchak GJ, Huang X, Nicolet D, Maharry KS, et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia. 2015;29:2143–53.

  9. 9.

    Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433–7.

  10. 10.

    Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007;7:9.

  11. 11.

    Sarry J-E, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest. 2011;121:384–95.

  12. 12.

    Heidel FH, Mar BG, Armstrong SA. Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol. 2011;94:109–17.

  13. 13.

    Jentzsch M, Bill M, Nicolet D, Leiblein S, Schubert K, Pless M, et al. Prognostic impact of the CD34+/CD38− cell burden in patients with acute myeloid leukemia receiving allogeneic stem cell transplantation. Am J Hematol. 2017;92:388–96.

  14. 14.

    Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101:3142–9.

  15. 15.

    Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Bäsecke J, Libra M, et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia. 2009;23:25–42.

  16. 16.

    Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110:4427–35.

  17. 17.

    Garzon R, Volinia S, Papaioannou D, Nicolet D, Kohlschmidt J, Yan PS, et al. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci USA. 2014;111:18679–84.

  18. 18.

    Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

  19. 19.

    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.

  20. 20.

    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.

  21. 21.

    Hung C-L, Wang L-Y, Yu Y-L, Chen HW, Srivastava S, Petrovics G, et al. A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci USA. 2014;111:18697–702.

  22. 22.

    Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

  23. 23.

    Yuan S-X, Wang J, Yang F, Tao QF, Zhang J, Wang LL, et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology. 2016;63:499–511.

  24. 24.

    Papaioannou D, Nicolet D, Volinia S, Mrózek K, Yan P, Bundschuh R, et al. Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica. 2017;102:1391–400.

  25. 25.

    Luo M, Jeong M, Sun D, Park HJ, Rodriguez BA, Xia Z, et al. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell. 2015;16:426–38.

  26. 26.

    Schwarzer A, Emmrich S, Schmidt F, Beck D, Ng M, Reimer C, et al. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 2017;8:218.

  27. 27.

    Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26:338–43.

  28. 28.

    Lu Q-C, Rui Z-H, Guo Z-L, Xie W, Shan S, Ren T. LncRNA-DANCR contributes to lung adenocarcinoma progression by sponging miR-496 to modulate mTOR expression. J Cell Mol Med. 2018;22:1527–37.

  29. 29.

    Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, et al. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46–55.

  30. 30.

    Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P, et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res. 2013;19:2355–67.

  31. 31.

    Huang X, Schwind S, Santhanam R, Santhanam R, Wang H, Hoellerbauer P, et al. Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget. 2016;7:59273–86.

  32. 32.

    Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22:1760–74.

  33. 33.

    Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 2017;551:384–8.

  34. 34.

    Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120:142–56.

  35. 35.

    Lechman ER, Gentner B, Ng SWK, Schoof EM, van Galen P, Kennedy JA, et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell. 2016;29:214–28.

  36. 36.

    Zorko NA, Bernot KM, Whitman SP, Siebenaler RF, Ahmed EH, Marcucci GG, et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood. 2012;120:1130–6.

  37. 37.

    Papaioannou D, Shen C, Nicolet D, McNeil B, Bill M, Karunasiri M, et al. Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proc Natl Acad Sci USA. 2017;114:E4641–7.

  38. 38.

    Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2008;347:70–78.

  39. 39.

    Breschi A, Gingeras TR, Guigó R. Comparative transcriptomics in human and mouse. Nat Rev Genet. 2017;18:425–40.

  40. 40.

    Zhou D, Teng F, Verhaak RGW, Su Z, Zhang Y, Brown M, et al. Integrative genomic analyses reveal clinically relevant long non-coding RNA in human cancer. Nat Struct Mol Biol. 2013;20:908–13.

  41. 41.

    Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407.

  42. 42.

    St. Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31:239–51.

Download references


We would like to thank Dr. David M. Lucas and Ms. Donna Bucci from the Leukemia Tissue Bank of The Ohio State University for sample support (CCC Support Grant: P30CA016058). This work is supported by the Leukemia Clinical Research Foundation (M.B.), Gabrielle’s Angels Foundation and ASH Bridge Grant (A.M.D).

Author information

Author notes

  1. These authors contributed equally: Ramiro Garzon, Adrienne M. Dorrance


  1. The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA

    • Marius Bill
    • , Dimitrios Papaioannou
    • , Malith Karunasiri
    • , Jessica Kohlschmidt
    • , Felice Pepe
    • , Christopher J. Walker
    • , Allison E. Walker
    • , Zachary Brannan
    • , Aparna Pathmanathan
    • , Krzysztof Mrózek
    • , Allison LaRocco
    • , Clara D. Bloomfield
    • , Ramiro Garzon
    •  & Adrienne M. Dorrance
  2. Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA

    • Malith Karunasiri
    • , Clara D. Bloomfield
    • , Ramiro Garzon
    •  & Adrienne M. Dorrance
  3. Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA

    • Xiaoli Zhang
  4. Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy

    • Stefano Volinia


  1. Search for Marius Bill in:

  2. Search for Dimitrios Papaioannou in:

  3. Search for Malith Karunasiri in:

  4. Search for Jessica Kohlschmidt in:

  5. Search for Felice Pepe in:

  6. Search for Christopher J. Walker in:

  7. Search for Allison E. Walker in:

  8. Search for Zachary Brannan in:

  9. Search for Aparna Pathmanathan in:

  10. Search for Xiaoli Zhang in:

  11. Search for Krzysztof Mrózek in:

  12. Search for Allison LaRocco in:

  13. Search for Stefano Volinia in:

  14. Search for Clara D. Bloomfield in:

  15. Search for Ramiro Garzon in:

  16. Search for Adrienne M. Dorrance in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Ramiro Garzon or Adrienne M. Dorrance.

Supplementary information

About this article

Publication history