Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic myelogenous leukemia

Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling


Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Cortez D, Reuther G, Pendergast AM. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene. 1997;15:2333–42.

    CAS  Article  Google Scholar 

  2. 2.

    Ren R. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene. 2002;21:8629–42.

    CAS  Article  Google Scholar 

  3. 3.

    Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood. 1994;83:2038–44.

    CAS  PubMed  Google Scholar 

  4. 4.

    Bolton-Gillespie E, Schemionek M, Klein HU, Flis S, Hoser G, Lange T, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121:4175–83.

    CAS  Article  Google Scholar 

  5. 5.

    Pawlowska E, Blasiak J. DNA Repair--A double-edged sword in the genomic stability of cancer cells--the case of chronic myeloid leukemia. Int J Mol Sci. 2015;16:27535–49.

    CAS  Article  Google Scholar 

  6. 6.

    Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    CAS  Article  Google Scholar 

  7. 7.

    de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M, et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol: Off J Am Soc Clin Oncol. 2008;26:3358–63.

    Article  Google Scholar 

  8. 8.

    Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121:396–409.

    CAS  Article  Google Scholar 

  9. 9.

    Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119:1501–10.

    CAS  Article  Google Scholar 

  10. 10.

    Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101:4701–7.

    CAS  Article  Google Scholar 

  11. 11.

    Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99:319–25.

    CAS  Article  Google Scholar 

  12. 12.

    Bhatia R. Altered microenvironmental regulation of CML stem cells. Leuk Suppl. 2014;3(Suppl 1):S1–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood. 2013;121:1824–38.

    CAS  Article  Google Scholar 

  14. 14.

    Tabe Y, Jin L, Iwabuchi K, Wang RY, Ichikawa N, Miida T, et al. Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia. 2012;26:883–92.

    CAS  Article  Google Scholar 

  15. 15.

    Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463:676–80.

    CAS  Article  Google Scholar 

  16. 16.

    Zhu X, Wang L, Zhang B, Li J, Dou X, Zhao RC. TGF-beta1-induced PI3K/Akt/NF-kappaB/MMP9 signalling pathway is activated in Philadelphia chromosome-positive chronic myeloid leukaemia hemangioblasts. J Biochem. 2011;149:405–14.

    CAS  Article  Google Scholar 

  17. 17.

    Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA. 1999;96:12804–9.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang B, Chu S, Agarwal P, Campbell VL, Hopcroft L, Jorgensen HG, et al. Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells. Blood. 2016;128:2671–82.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU, et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012;21:577–92.

    CAS  Article  Google Scholar 

  20. 20.

    Panteli KE, Hatzimichael EC, Bouranta PK, Katsaraki A, Seferiadis K, Stebbing J, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol. 2005;130:709–15.

    CAS  Article  Google Scholar 

  21. 21.

    Anand M, Chodda SK, Parikh PM, Nadkarni JS. Abnormal levels of proinflammatory cytokines in serum and monocyte cultures from patients with chronic myeloid leukemia in different stages, and their role in prognosis. Hematol Oncol. 1998;16:143–54.

    CAS  Article  Google Scholar 

  22. 22.

    Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem. 2009;108:577–88.

    CAS  Article  Google Scholar 

  23. 23.

    Traer E, MacKenzie R, Snead J, Agarwal A, Eiring AM, O’Hare T, et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia. 2012;26:1140–3.

    CAS  Article  Google Scholar 

  24. 24.

    Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell. 2011;20:661–73.

    CAS  Article  Google Scholar 

  25. 25.

    Nievergall E, Reynolds J, Kok CH, Watkins DB, Biondo M, Busfield SJ, et al. TGF-alpha and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia. 2016;30:1263–72.

    CAS  Article  Google Scholar 

  26. 26.

    Welner RS, Amabile G, Bararia D, Czibere A, Yang H, Zhang H, et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell. 2015;27:671–81.

    CAS  Article  Google Scholar 

  27. 27.

    Guschin D, Rogers N, Briscoe J, Witthuhn B, Watling D, Horn F, et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 1995;14:1421–9.

    CAS  Article  Google Scholar 

  28. 28.

    Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93:373–83.

    CAS  Article  Google Scholar 

  29. 29.

    Eiring AM, Page BDG, Kraft IL, Mason CC, Vellore NA, Resetca D, et al. Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia. 2015;29:586–97.

    CAS  Article  Google Scholar 

  30. 30.

    Gortz D, Braun GS, Maruta Y, Djudjaj S, van Roeyen CR, Martin IV, et al. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Sci Rep. 2015;5:14685.

    Article  Google Scholar 

  31. 31.

    Wang GG, Calvo KR, Pasillas MP, Sykes DB, Hacker H, Kamps MP. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat Methods. 2006;3:287–93.

    CAS  Article  Google Scholar 

  32. 32.

    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    CAS  Article  Google Scholar 

  33. 33.

    Kirschner M, Maurer A, Wlodarski MW, Ventura Ferreira MS, Bouillon AS, Halfmeyer I, et al. Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita. Leukemia. 2018;32:1762–7.

    CAS  Article  Google Scholar 

  34. 34.

    Han L, Schubert C, Kohler J, Schemionek M, Isfort S, Brummendorf TH, et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol. 2016;9:45.

    Article  Google Scholar 

  35. 35.

    Chen Y, Dai X, Haas AL, Wen R, Wang D. Proteasome-dependent down-regulation of activated Stat5A in the nucleus. Blood. 2006;108:566–74.

    CAS  Article  Google Scholar 

  36. 36.

    Bruennert D, Czibere A, Bruns I, Kronenwett R, Gattermann N, Haas R, et al. Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34 + cells from patients with chronic myelogenous leukaemia following imatinib therapy. Leukemia. 2009;23:983–5.

    CAS  Article  Google Scholar 

  37. 37.

    Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.

    Article  Google Scholar 

  38. 38.

    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  Google Scholar 

  39. 39.

    Koschmieder S, Gottgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005;105:324–34.

    CAS  Article  Google Scholar 

  40. 40.

    Schubert C, Chatain N, Braunschweig T, Schemionek M, Feldberg K, Hoffmann M, et al. The SCLtTAxBCR-ABL transgenic mouse model closely reflects the differential effects of dasatinib on normal and malignant hematopoiesis in chronic phase-CML patients. Oncotarget. 2017;8:34736–49.

    Article  Google Scholar 

  41. 41.

    Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T, et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood. 2010;115:3185–95.

    CAS  Article  Google Scholar 

  42. 42.

    Schemionek M, Herrmann O, Reher MM, Chatain N, Schubert C, Costa IG, et al. Mtss1 is a critical epigenetically regulated tumor suppressor in CML. Leukemia. 2016;30:823–32.

    CAS  Article  Google Scholar 

  43. 43.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  Article  Google Scholar 

  44. 44.

    Van Rompaey L, Galien R, van der Aar EM, Clement-Lacroix P, Nelles L, Smets B, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013;191:3568–77.

    Article  Google Scholar 

  45. 45.

    Luchi MF-GR, Douglas D, Zhang H, Flores R, Newton R, Scherle P, et al. A randomized, dose-ranging, placebo-controlled 84-day (12-week) study of incb039110, a selective janus kinase-1 inhibitor in patients with active rheumatoid arthritis. In: ACR/ARHP Annual Meeting, San Diego, CA; 2013.

  46. 46.

    Mascarenhas JO, Talpaz M, Gupta V, Foltz LM, Savona MR, Paquette R, et al. Primary analysis of a phase II open-label trial of INCB039110, a selective JAK1 inhibitor, in patients with myelofibrosis. Haematologica. 2017;102:327–35.

    CAS  Article  Google Scholar 

  47. 47.

    Purandare AV, McDevitt TM, Wan H, You D, Penhallow B, Han X, et al. Characterization of BMS-911543, a functionally selective small-molecule inhibitor of JAK2. Leukemia. 2012;26:280–8.

    CAS  Article  Google Scholar 

  48. 48.

    Wan H, Schroeder GM, Hart AC, Inghrim J, Grebinski J, Tokarski JS, et al. Discovery of a highly selective JAK2 Inhibitor, BMS-911543, for the treatment of myeloproliferative neoplasms. ACS Med Chem Lett. 2015;6:850–5.

    CAS  Article  Google Scholar 

  49. 49.

    Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell. 2003;112:831–43.

    CAS  Article  Google Scholar 

  50. 50.

    Tanis KQ, Veach D, Duewel HS, Bornmann WG, Koleske AJ. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Mol Cell Biol. 2003;23:3884–96.

    CAS  Article  Google Scholar 

  51. 51.

    Narimatsu M, Maeda H, Itoh S, Atsumi T, Ohtani T, Nishida K, et al. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol Cell Biol. 2001;21:6615–25.

    CAS  Article  Google Scholar 

  52. 52.

    Schemionek M, Spieker T, Kerstiens L, Elling C, Essers M, Trumpp A, et al. Leukemic spleen cells are more potent than bone marrow-derived cells in a transgenic mouse model of CML. Leukemia. 2012;26:1030–7.

    CAS  Article  Google Scholar 

  53. 53.

    Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109:58–60.

    CAS  Article  Google Scholar 

  54. 54.

    Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    CAS  Article  Google Scholar 

  55. 55.

    Takahashi N, Kyo T, Maeda Y, Sugihara T, Usuki K, Kawaguchi T, et al. Discontinuation of imatinib in Japanese patients with chronic myeloid leukemia. Haematologica. 2012;97:903–6.

    CAS  Article  Google Scholar 

  56. 56.

    Saussele S, Richter J, Hochhaus A, Mahon FX. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia. 2016;30:1638–47.

    CAS  Article  Google Scholar 

  57. 57.

    Rea D, Nicolini FE, Tulliez M, Guilhot F, Guilhot J, Guerci-Bresler A, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129:846–54.

    CAS  Article  Google Scholar 

  58. 58.

    Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol: Off J Am Soc Clin Oncol. 2014;32:424–30.

    CAS  Article  Google Scholar 

  59. 59.

    Saussele S, Richter J, Guilhot J, Gruber FX, Hjorth-Hansen H, Almeida A, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19:747–57.

    CAS  Article  Google Scholar 

  60. 60.

    Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017;23:692–702.

    CAS  Article  Google Scholar 

  61. 61.

    Nair RR, Tolentino JH, Argilagos RF, Zhang L, Pinilla-Ibarz J, Hazlehurst LA. Potentiation of Nilotinib-mediated cell death in the context of the bone marrow microenvironment requires a promiscuous JAK inhibitor in CML. Leuk Res. 2012;36:756–63.

    CAS  Article  Google Scholar 

  62. 62.

    Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther. 2008;7:3169–75.

    CAS  Article  Google Scholar 

  63. 63.

    Puttini M, Coluccia AM, Boschelli F, Cleris L, Marchesi E, Donella-Deana A, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl + neoplastic cells. Cancer Res. 2006;66:11314–22.

    CAS  Article  Google Scholar 

  64. 64.

    Rupar K, Moharram SA, Kazi JU, Ronnstrand L. SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation. Sci Rep. 2018;8:6405.

    Article  Google Scholar 

  65. 65.

    Rebe C, Vegran F, Berger H, Ghiringhelli F. STAT3 activation: A key factor in tumor immunoescape. JAKSTAT. 2013;2:e23010.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, et al. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov. 2012;2:512–23.

    CAS  Article  Google Scholar 

  67. 67.

    Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner KU, et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol. 2012;8:285–93.

    CAS  Article  Google Scholar 

  68. 68.

    Valent P. Targeting the JAK2-STAT5 pathway in CML. Blood. 2014;124:1386–8.

    CAS  Article  Google Scholar 

  69. 69.

    Chen H, Lin W, Zhang Y, Lin L, Chen J, Zeng Y, et al. IL-10 promotes neurite outgrowth and synapse formation in cultured cortical neurons after the oxygen-glucose deprivation via JAK1/STAT3 pathway. Sci Rep. 2016;6:30459.

    CAS  Article  Google Scholar 

  70. 70.

    Li X, Zhu Q, Cao Q, Chen H, Qian P. Japanese encephalitis virus upregulates the expression of SOCS3 in mouse brain and Raw264.7 Cells. Viruses. 2014;6:4280–93.

    Article  Google Scholar 

Download references


The authors thank Julia Plum and Kristina Feldberg for excellent technical assistance. Hans Häcker kindly provided the MSCV-ERBDH-Hoxb8-Neo plasmid. Dieter Görtz (Institute of Biochemistry and Molecular Biology, RWTH Aachen University) generated and provided the IL-6 RFP. This work was supported by the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University (O1–3/531430; O3–5/531805; O3–3/531803) and DFG (SCHE 1938/1–1).

Author information




MKK designed research, performed experiments, analyzed the data, and wrote the manuscript. MB performed experiments, analyzed the data, designed research, and amended the manuscript. OH, JZ performed experiments. NC designed research, analyzed the data, and amended the manuscript. AM and MK performed research, analyzed the data, and amended the manuscript. IGC and TM analyzed expression data. SK and THB contributed research material and revised the manuscript. GMN designed research, analyzed the data, and revised the manuscript. MS designed research, analyzed the data, and wrote the manuscript. Final approval of the manuscript was provided by all authors.

Corresponding author

Correspondence to Mirle Schemionek.

Ethics declarations

Conflict of interest

Steffen Koschmieder reports having served on the advisory boards for Pfizer, Incyte/Ariad, Novartis, AOP, BMS, and CTI; honoraria: Novartis, BMS, Pfizer, Incyte/Ariad, Shire, Janssen; scientific research support: Novartis Foundation, BMS, Novartis; Others: Alexion. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuepper, M.K., Bütow, M., Herrmann, O. et al. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia 33, 1964–1977 (2019).

Download citation

Further reading


Quick links