Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple myeloma gammopathies

Genome-wide association study of monoclonal gammopathy of unknown significance (MGUS): comparison with multiple myeloma

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Merlini G, Palladini G. Differential diagnosis of monoclonal gammopathy of undetermined significance. Hematology Am Soc Hematol Educ Program. 2012;2012:595–603.

    PubMed  Google Scholar 

  2. Wadhera RK, Rajkumar SV. Prevalence of monoclonal gammopathy of undetermined significance: a systematic review. Mayo Clin Proc. 2010;85:933–42.

    Article  Google Scholar 

  3. Went M, Sud A, Forsti A, Halvarsson BM, Weinhold N, Kimber S, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9:3707.

    Article  Google Scholar 

  4. Thomsen H, Campo C, Weinhold N, Filho MI, Pour L, Gregora E, et al. Genome-wide association study on monoclonal gammopathy of unknown significance (MGUS). Eur J Haematol. 2017;99:70–9.

    Article  CAS  Google Scholar 

  5. Weinhold N, Johnson DC, Rawstron AC, Forsti A, Doughty C, Vijayakrishnan J, et al. Inherited genetic susceptibility to monoclonal gammopathy of unknown significance. Blood. 2014;123:2513–7.

    Article  CAS  Google Scholar 

  6. Chubb D, Weinhold N, Broderick P, Chen B, Johnson DC, Forsti A, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet. 2013;45:1221–5.

    Article  CAS  Google Scholar 

  7. Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, et al. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest. 2015;125:2979–94.

    Article  Google Scholar 

  8. Golmard L, Castera L, Krieger S, Moncoutier V, Abidallah K, Tenreiro H, et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet. 2017;25:1345–53.

    Article  CAS  Google Scholar 

  9. Bennett JA, Braga AC, Pinto A, Van de Vijver K, Cornejo K, Pesci A, et al. Uterine PEComas: a morphologic, immunohistochemical, and molecular analysis of 32 tumors. Am J Surg Pathol. 2018;42:1370–83.

    Article  Google Scholar 

  10. Bjorklund CC, Ma W, Wang ZQ, Davis RE, Kuhn DJ, Kornblau SM, et al. Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide. J Biol Chem. 2011;286:11009–20.

    Article  CAS  Google Scholar 

  11. Manni S, Carrino M, Manzoni M, Gianesin K, Nunes SC, Costacurta M, et al. Inactivation of CK1alpha in multiple myeloma empowers drug cytotoxicity by affecting AKT and beta-catenin survival signaling pathways. Oncotarget. 2017;8:14604–19.

    Article  Google Scholar 

  12. Hu Y, Song W, Cirstea D, Lu D, Munshi NC, Anderson KC. CSNK1alpha1 mediates malignant plasma cell survival. Leukemia. 2015;29:474–82.

    Article  CAS  Google Scholar 

  13. Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD, Marra MA, et al. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy. 2015;11:1668–87.

    Article  CAS  Google Scholar 

  14. Hengeveld PJ, Kersten MJ. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy? Blood Cancer J. 2015;5:e282.

    Article  CAS  Google Scholar 

  15. Chattopadhyay S, Thomsen H, da Silva Filho MI, Weinhold N, Hoffmann P, Nothen MM, et al. Enrichment of B cell receptor signaling and epidermal growth factor receptor pathways in monoclonal gammopathy of undetermined significance: a genome-wide genetic interaction study. Mol Med. 2018;24:30.

    Article  Google Scholar 

Download references

Acknowledgements

Supported by Multiple Myeloma Research Foundation, the German Ministry of Education and Science (01ZX1309B), the Harald Huppert Foundation, and Deutsche Krebshilfe. Research by the Houlston Group is supported by grants from myeloma UK and BLOODWISE. PV and LV are recipients of a support from UNCE-MED006 and PROGRESS Q28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asta Försti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, H., Chattopadhyay, S., Weinhold, N. et al. Genome-wide association study of monoclonal gammopathy of unknown significance (MGUS): comparison with multiple myeloma. Leukemia 33, 1817–1821 (2019). https://doi.org/10.1038/s41375-019-0396-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0396-x

This article is cited by

Search

Quick links