Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML

Abstract

Transformation of post-myeloproliferative neoplasms into secondary (s) AML exhibit poor clinical outcome. In addition to increased JAK-STAT and PI3K-AKT signaling, post-MPN sAML blast progenitor cells (BPCs) demonstrate increased nuclear β-catenin levels and TCF7L2 (TCF4) transcriptional activity. Knockdown of β-catenin or treatment with BC2059 that disrupts binding of β-catenin to TBL1X (TBL1) depleted nuclear β-catenin levels. This induced apoptosis of not only JAKi-sensitive but also JAKi-persister/resistant post-MPN sAML BPCs, associated with attenuation of TCF4 transcriptional targets MYC, BCL-2, and Survivin. Co-targeting of β-catenin and JAK1/2 inhibitor ruxolitinib (rux) synergistically induced lethality in post-MPN sAML BPCs and improved survival of mice engrafted with human sAML BPCs. Notably, co-treatment with BET protein degrader ARV-771 and BC2059 also synergistically induced apoptosis and improved survival of mice engrafted with JAKi-sensitive or JAKi-persister/resistant post-MPN sAML cells. These preclinical findings highlight potentially promising anti-post-MPN sAML activity of the combination of β-catenin and BETP antagonists against post-MPN sAML BPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    PubMed  CAS  Google Scholar 

  2. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–33.

    PubMed  PubMed Central  Google Scholar 

  3. Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5:316–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Rampal R, Mascarenhas J. Pathogenesis and management of acute myeloid leukemia that has evolved from a myeloproliferative neoplasm. Curr Opin Hematol. 2014;21:65–71.

    PubMed  CAS  Google Scholar 

  5. Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E5401–10.

    PubMed  CAS  Google Scholar 

  6. Zhang SJ, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119:4480–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Spiegel JY, McNamara C, Kennedy JA, Panzarella T, Arruda A, Stockley T, et al. Impact of genomic alterations on outcomes in myelofibrosis patients undergoing JAK1/2 inhibitor therapy. Blood Adv. 2017;1:1729–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Leroy E, Constantinescu SN. Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile janus kinase inhibition. Leukemia. 2017;31:1023–38.

    PubMed  CAS  Google Scholar 

  9. Vannucchi AM, Kantarjian HM, Kiladjian JJ, Gotlib J, Cervantes F, Mesa RA, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100:1139–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood. 2017;130:115–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Kundranda MN, Tibes R, Mesa RA. Transformation of a chronic myeloproliferative neoplasm to acute myelogenous leukemia: does anything work? Curr Hematol Malig Rep. 2012;7:78–86.

    PubMed  Google Scholar 

  12. Verstovsek S, Fiskus W, Manshouri T, Bhalla KN. Targeting cistrome and dysregulated transcriptome of post-MPN sAML. Oncotarget. 2017;8:93301–2.

    PubMed  PubMed Central  Google Scholar 

  13. Fiskus W, Verstovsek S, Manshouri T, Rao R, Balusu R, Venkannagari S, et al. Heat shock protein 90 inhibitor is synergistic with JAK2 inhibitor and overcomes resistance to JAK2-TKI in human myeloproliferative neoplasm cells. Clin Cancer Res. 2011;17:7347–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489:155–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin Cancer Res. 2014;20:2051–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Akahane K, Sanda T, Mansour MR, Radimerski T, DeAngelo DJ, Weinstock DM, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:219–28.

    PubMed  CAS  Google Scholar 

  17. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    PubMed  CAS  Google Scholar 

  18. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, et al. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606–18.

    PubMed  CAS  Google Scholar 

  20. Petropoulos K, Arseni N, Schessl C, Stadler CR, Rawat VP, Deshpande AJ, et al. A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis. J Exp Med. 2008;205:515–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10:276–86.

    PubMed  CAS  Google Scholar 

  22. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    PubMed  CAS  Google Scholar 

  23. Liu YC, Lai WC, Chuang KA, Shen YJ, Hu WS, Ho CH, et al. Blockade of JAK2 activity suppressed accumulation of beta-catenin in leukemic cells. J Cell Biochem. 2010;111:402–11.

    PubMed  CAS  Google Scholar 

  24. Li J, Wang CY. TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol. 2008;10:160–9.

    PubMed  CAS  Google Scholar 

  25. Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol. 2011;18:177–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ, et al. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem. 2010;285:13507–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Li JY, Daniels G, Wang J, Zhang X. TBL1XR1 in physiological and pathological states. Am J Clin Exp Urol. 2015;3:13–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Fiskus W, Sharma S, Saha S, Shah B, Devaraj SG, Sun B, et al. Pre-clinical efficacy of combined therapy with novel beta-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia. 2015;29:1267–78.

    PubMed  CAS  Google Scholar 

  29. Saenz DT, Fiskus W, Qian Y, Manshouri T, Rajapakshe K, Raina K, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia. 2017;31:1951–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Wan L, Wen H, Li Y, Lyu J, Xi Y, Hoshii T, et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature. 2017;543:265–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Ramasamy K, Khatun H, Macpherson L, Caley MP, Sturge J, Mufti GJ, et al. Fluorescence-based experimental model to evaluate the concomitant effect of drugs on the tumour microenvironment and cancer cells. Br J Haematol. 2012;157:564–79.

    PubMed  CAS  Google Scholar 

  32. Fisher DAC, Malkova O, Engle EK, Miner CA, Fulbright MC, Behbehani GK, et al. Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia. Leukemia. 2017;31:1962–74.

    PubMed  CAS  Google Scholar 

  33. Fiskus W, Verstovsek S, Manshouri T, Smith JE, Peth K, Abhyankar S, et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther. 2013;12:577–88.

    PubMed  CAS  Google Scholar 

  34. Meyer SC, Keller MD, Chiu S, Koppikar P, Guryanova OA, Rapaport F, et al. CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms. Cancer Cell. 2015;28:15–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Li L, Sheng Y, Li W, Hu C, Mittal N, Tohyama K, et al. beta-Catenin is a candidate therapeutic target for myeloid neoplasms with del(5q). Cancer Res. 2017;77:4116–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Barbieri E, Deflorian G, Pezzimenti F, Valli D, Saia M, Meani N, et al. Nucleophosmin leukemogenic mutant activates Wnt signaling during zebrafish development. Oncotarget. 2016;7:55302–12.

    PubMed  PubMed Central  Google Scholar 

  37. Dietrich PA, Yang C, Leung HH, Lynch JR, Gonzales E, Liu B, et al. GPR84 sustains aberrant beta-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis. Blood. 2014;124:3284–94.

    PubMed  CAS  Google Scholar 

  38. Kajiguchi T, Chung EJ, Lee S, Stine A, Kiyoi H, Naoe T, et al. FLT3 regulates beta-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells. Leukemia. 2007;21:2476–84.

    PubMed  CAS  Google Scholar 

  39. Kajiguchi T, Katsumi A, Tanizaki R, Kiyoi H, Naoe T. Y654 of beta-catenin is essential for FLT3/ITD-related tyrosine phosphorylation and nuclear localization of beta-catenin. Eur J Haematol. 2012;88:314–20.

    PubMed  CAS  Google Scholar 

  40. Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH, et al. Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J. 2007;26:1456–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506:240–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim YM, Gang EJ, Kahn M. CBP/catenin antagonists: targeting LSCs’ Achilles heel. Exp Hematol. 2017;52:1–11.

    PubMed  PubMed Central  Google Scholar 

  44. Soldi R, Horrigan SK, Cholody MW, Padia J, Sorna V, Bearss J, et al. Design, synthesis, and biological evaluation of a series of anthracene-9,10-dione dioxime beta-catenin pathway inhibitors. J Med Chem. 2015;58:5854–62.

    PubMed  CAS  Google Scholar 

  45. Savvidou I, Khong T, Cuddihy A, McLean C, Horrigan S, Spencer A. Beta-catenin inhibitor BC2059 is efficacious as monotherapy or in combination with proteasome inhibitor bortezomib in multiple myeloma. Mol Cancer Ther. 2017;16:1765–78.

    PubMed  CAS  Google Scholar 

  46. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433–7.

    PubMed  CAS  Google Scholar 

  48. Bhagwat N, Koppikar P, Keller M, Marubayashi S, Shank K, Rampal R, et al. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood. 2014;123:2075–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell. 2014;54:728–36.

    PubMed  CAS  Google Scholar 

  51. Wyspianska BS, Bannister AJ, Barbieri I, Nangalia J, Godfrey A, Calero-Nieto FJ, et al. BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia. 2014;28:88–97.

    PubMed  CAS  Google Scholar 

  52. Saenz DT, Fiskus W, Manshouri T, Rajapakshe K, Krieger S, Sun B, et al. BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells. Leukemia. 2017;31:678–87.

    PubMed  CAS  Google Scholar 

  53. Toure M, Crews CM. Small-molecule PROTACS: new approaches to protein degradation. Angew Chem. 2016;55:1966–73.

    CAS  Google Scholar 

  54. Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D, et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature. 2015;525:538–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M, et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature. 2015;525:543–7.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Sequencing and Microarray Core Facility and Flow Cytometry and Cellular Imaging (FCCI) Core Facility which are supported by the MD Anderson Cancer Center Support Grant 5P30 CA016672-40. This project was partially supported by CPRIT RP170295 (CC), the shared Proteomics and Metabolomics core at Baylor College of Medicine with funding from the NIH (P30 CA125123), CPRIT Proteomics and Metabolomics Core Facility RP170005 (K Rajapakshe and CC), and the NCI-recognized Dan L. Duncan Cancer Center. CMC acknowledges support from the National Institutes of Health (Grant number R35 CA197589). KNB acknowledges support from the National Institutes of Health (Grant number R01 CA173877). This research is supported in part by the MD Anderson Cancer Center Leukemia SPORE (P50 CA100632).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KNB. Formal analysis: CC, K Rajapakshe, and PQ. Investigation: DTS, WF, CPM, AJN, BS, and DNS. Resources: YQ, K Raina, CC, K Rajapakshe, TMK, JDK, LM, RS, PB, GB, SMK, SS, SH, CMC. Visualization: DTS, WF, CPM, CC and K Rajapakshe. Writing—original draft: KNB and WF. Writing—review and editing: KNB.

Corresponding author

Correspondence to Kapil N. Bhalla.

Ethics declarations

Conflict of interest

CMC is the founder and Chief Scientific Advisor of, and possesses an equity ownership stake in, Arvinas, Inc. YQ and K Raina are Arvinas employees and possess an equity ownership stake in Arvinas. SH is the founder and Chief Scientific Officer of Beta Cat Pharmaceuticals. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenz, D.T., Fiskus, W., Manshouri, T. et al. Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML. Leukemia 33, 1373–1386 (2019). https://doi.org/10.1038/s41375-018-0334-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0334-3

This article is cited by

Search

Quick links