Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

Dasatinib and navitoclax act synergistically to target NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) with co-occurring NUP98-NSD1 and FLT3-ITD is associated with unfavorable prognosis and represents a particularly challenging treatment group. To identify novel effective therapies for this AML subtype, we screened patient cells and engineered cell models with over 300 compounds. We found that mouse hematopoietic progenitors co-expressing NUP98-NSD1 and FLT3-ITD had significantly increased sensitivity to FLT3 and MEK-inhibitors compared to cells expressing either aberration alone (P< 0.001). The cells expressing NUP98-NSD1 alone had significantly increased sensitivity to BCL2-inhibitors (P= 0.029). Furthermore, NUP98-NSD1+/FLT3-ITD+ patient cells were also very sensitive to BCL2-inhibitor navitoclax, although the highest select sensitivity was found to SRC/ABL-inhibitor dasatinib (mean IC50 = 2.2 nM). Topoisomerase inhibitor mitoxantrone was the least effective drug against NUP98-NSD1+/FLT3-ITD+ AML cells. Of the 25 significant hits, four remained significant also compared to NUP98-NSD1-/FLT3-ITD+ AML patients. We found that SRC/ABL-inhibitor dasatinib is highly synergistic with BCL2-inhibitor navitoclax in NUP98-NSD1+/FLT3-ITD+ cells. Gene expression analysis supported the potential relevance of dasatinib and navitoclax by revealing significantly higher expression of BCL2A1, FGR, and LCK in NUP98-NSD1+/FLT3-ITD+ patients compared to healthy CD34+ cells. Our data suggest that dasatinib–navitoclax combination may offer a clinically relevant treatment strategy for AML with NUP98-NSD1 and concomitant FLT3-ITD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Papaemmanuil E, Dohner H, Campbell PJ. Genomic classification in acute myeloid leukemia. N Engl J Med. 2016;375:900–1.

    PubMed  Google Scholar 

  2. Gough SM, Slape CI, Aplan PD. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood. 2011;118:6247–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Soler G, Kaltenbach S, Dobbelstein S, Broccardo C, Radford I, Mozziconacci MJ, et al. Identification of GSX2 and AF10 as NUP98 partner genes in myeloid malignancies. Blood Cancer J. 2013;3:e124.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Lim HH, An GD, Woo KS, Kim KH, Kim JM, Kim SH, et al. NUP98 Rearrangement in Acute Myelomonocytic Leukemia with t(11;19)(p15; p12): The First Case Report Worldwide. Ann Lab Med. 2017;37:285–7.

    PubMed  PubMed Central  Google Scholar 

  5. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15; p15) in human myeloid leukaemia. Nat Genet. 1996;12:154–8.

    PubMed  CAS  Google Scholar 

  6. Saw J, Curtis DJ, Hussey DJ, Dobrovic A, Aplan PD, Slape CI. The fusion partner specifies the oncogenic potential of NUP98 fusion proteins. Leuk Res. 2013;37:1668–73.

    PubMed  CAS  Google Scholar 

  7. Wu X, Kasper LH, Mantcheva RT, Mantchev GT, Springett MJ, van Deursen JM. Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function. Proc Natl Acad Sci USA. 2001;98:3191–6.

    PubMed  CAS  Google Scholar 

  8. Struski S, Lagarde S, Bories P, Puiseux C, Prade N, Cuccuini W, et al. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia. 2017;31:565–72.

    PubMed  CAS  Google Scholar 

  9. Bisio V, Zampini M, Tregnago C, Manara E, Salsi V, Di Meglio A, et al. NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: a report from the AIEOP-AML group. Leukemia. 2017;31:974–7.

    PubMed  CAS  Google Scholar 

  10. Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15:371–81.

    PubMed  CAS  Google Scholar 

  11. Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, et al. A novel gene, NSD1, is fused to NUP98 in the t (5; 11)(q35; p15. 5) in de novo childhood acute myeloid leukemia. Blood. 2001;98:1264–7.

    PubMed  CAS  Google Scholar 

  12. Brown J, Jawad M, Twigg SR, Saracoglu K, Sauerbrey A, Thomas AE, et al. A cryptic t(5;11)(q35; p15.5) in 2 children with acute myeloid leukemia with apparently normal karyotypes, identified by a multiplex fluorescence in situ hybridization telomere assay. Blood. 2002;99:2526–31.

    PubMed  CAS  Google Scholar 

  13. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, Kuipers JE, et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood. 2011;118:3645–56.

    PubMed  CAS  Google Scholar 

  14. Ostronoff F, Othus M, Gerbing RB, Loken MR, Raimondi SC, Hirsch BA, et al. NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report. Blood. 2014;124:2400–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Akiki S, Dyer SA, Grimwade D, Ivey A, Abou-Zeid N, Borrow J, et al. NUP98-NSD1 fusion in association with FLT3-ITD mutation identifies a prognostically relevant subgroup of pediatric acute myeloid leukemia patients suitable for monitoring by real time quantitative PCR. Genes Chromosomes Cancer. 2013;52:1053–64.

    PubMed  CAS  Google Scholar 

  16. Shiba N, Ichikawa H, Taki T, Park MJ, Jo A, Mitani S, et al. NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer. 2013;52:683–93.

    PubMed  CAS  Google Scholar 

  17. Thanasopoulou A, Tzankov A, Schwaller J. Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction. Haematologica. 2014;99:1465–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 2013;3:1416–29.

    PubMed  CAS  Google Scholar 

  19. Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519:102–5.

    PubMed  CAS  Google Scholar 

  20. Kontro M, Kumar A, Majumder MM, Eldfors S, Parsons A, Pemovska T, et al. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia. 2017;31:301–9.

    PubMed  CAS  Google Scholar 

  21. Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.

    PubMed  CAS  Google Scholar 

  22. Yadav B, Pemovska T, Szwajda A, Kulesskiy E, Kontro M, Karjalainen R, et al. Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci Rep. 2014;4:5193.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Ianevski A, He L, Aittokallio T, Tang J. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics. 2017;33:2413–5.

    PubMed  PubMed Central  Google Scholar 

  25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    PubMed  CAS  Google Scholar 

  26. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    PubMed  PubMed Central  Google Scholar 

  27. Kumar A, Kankainen M, Parsons A, Kallioniemi O, Mattila P, Heckman CA. The impact of RNA sequence library construction protocols on transcriptomic profiling of leukemia. BMC Genom. 2017;18:629.

    Google Scholar 

  28. Kivioja JL, Lopez Marti JM, Kumar A, Kontro M, Edgren H, Parsons A, et al. Chimeric NUP98-NSD1 transcripts from the cryptic t(5;11)(q35.2; p15.4) in adult de novo acute myeloid leukemia. Leuk Lymphoma. 2018;59:725–32.

    PubMed  CAS  Google Scholar 

  29. Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood. 2009;114:5034–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19:624–31.

    PubMed  CAS  Google Scholar 

  31. Crescenzi B, Nofrini V, Barba G, Matteucci C, Di Giacomo D, Gorello P, et al. NUP98/11p15 translocations affect CD34+ cells in myeloid and T lymphoid leukemias. Leuk Res. 2015;39:769–72.

    PubMed  CAS  Google Scholar 

  32. Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L, et al. NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J. 2003;22:3153–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007;9:804–12.

    PubMed  CAS  Google Scholar 

  34. Laukkanen S, Gronroos T, Polonen P, Kuusanmaki H, Mehtonen J, Cloos J, et al. In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL. Blood. Cancer J. 2017;7:e604.

    CAS  Google Scholar 

  35. Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SC, Wattel MM, van Esser JW, Valk PJ, et al. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia. 2009;23:627–9.

    PubMed  CAS  Google Scholar 

  36. Deshpande AJ, Deshpande A, Sinha AU, Chen L, Chang J, Cihan A, et al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell. 2014;26:896–908.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Franks TM, McCloskey A, Shokirev MN, Benner C, Rathore A, Hetzer MW. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev. 2017;31:2222–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Drake KM, Watson VG, Kisielewski A, Glynn R, Napper AD. A sensitive luminescent assay for the histone methyltransferase NSD1 and other SAM-dependent enzymes. Assay Drug Dev Technol. 2014;12:258–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Ofran Y. Concealed dagger in FLT3/ITD+AML. Blood. 2014;124:2317–9.

    PubMed  CAS  Google Scholar 

  40. Fasan A, Haferlach C, Alpermann T, Kern W, Haferlach T, Schnittger S. A rare but specific subset of adult AML patients can be defined by the cytogenetically cryptic NUP98-NSD1 fusion gene. Leukemia. 2013;27:245–8.

    PubMed  CAS  Google Scholar 

  41. Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, et al. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 2015;27:589–602.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol. 2016;9:49.

    PubMed  PubMed Central  Google Scholar 

  43. Niu X, Wang G, Wang Y, Caldwell JT, Edwards H, Xie C, et al. Acute myeloid leukemia cells harboring MLL fusion genes or with the acute promyelocytic leukemia phenotype are sensitive to the Bcl-2-selective inhibitor ABT-199. Leukemia. 2014;28:1557–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 2016;6:1106–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M, Geng H, et al. MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Rep. 2015;13:2715–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Xu H, Valerio DG, Eisold ME, Sinha A, Koche RP, Hu W, et al. NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis. Cancer Cell. 2016;30:863–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res. 2014;201:27–65.

    PubMed  CAS  Google Scholar 

  48. Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in acute myeloid leukemia: current status and future directions. Mol Cancer Ther. 2017;16:991–1001.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Kurtz SE, Eide CA, Kaempf A, Khanna V, Savage SL, Rofelty A, et al. Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proc Natl Acad Sci USA. 2017;114:E7554–63.

    PubMed  CAS  Google Scholar 

  50. Tromp JM, Geest CR, Breij EC, Elias JA, van Laar J, Luijks DM, et al. Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia. Clin Cancer Res. 2012;18:487–98.

    PubMed  CAS  Google Scholar 

  51. Leonard JT, Rowley JS, Eide CA, Traer E, Hayes-Lattin B, Loriaux M, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med. 2016;8:354ra114.

    PubMed  Google Scholar 

  52. Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, et al. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12:316–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kohl TM, Hellinger C, Ahmed F, Buske C, Hiddemann W, Bohlander SK, et al. BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia. 2007;21:1763–72.

    PubMed  CAS  Google Scholar 

  54. Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T. Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood. 2003;102:2969–75.

    PubMed  CAS  Google Scholar 

  55. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ 3rd, Saunders GF. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res. 1995;55:5386–9.

    PubMed  CAS  Google Scholar 

  56. Morrison DJ, English MA, Licht JD. WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak. Cancer Res. 2005;65:8174–82.

    PubMed  CAS  Google Scholar 

  57. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    PubMed  PubMed Central  Google Scholar 

  58. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and healthy donors who participated in this study. We would also like to thank staff at the FIMM High-Throughput Biomedicine Unit for their expert technical assistance with the drug screening experiments and the FIMM Sequencing Unit for their assistance with sequence analysis. We are grateful to laboratory technicians Alun Parsons, Minna Suvela, and Siv Knaappila for sample processing. We acknowledge personnel at the Biomedicum Helsinki FACS core and Functional Genomics Unit for their help with flow cytometry and RCV-tests. This work was supported by grants from Finnish Funding Agency for Technology and Innovation (grant number 40336/09). Personal grant support was received from the Väre Foundation for Pediatric Cancer Research, Ida Montin Foundation, the Cancer Society of Finland, and Finnish Hematology Association (JK). JS and AT were supported by grants from the Swiss Cancer League (KFS-3487-08-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline A. Heckman.

Ethics declarations

Conflict of interest

KP has received honoraria and research funding from Celgene, Novartis, and Pfizer. CAH has received research funding from Celgene, Novartis, Orion, and Innovative Medicines Initiatives 2 project HARMONY. The remaining authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivioja, J.L., Thanasopoulou, A., Kumar, A. et al. Dasatinib and navitoclax act synergistically to target NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia. Leukemia 33, 1360–1372 (2019). https://doi.org/10.1038/s41375-018-0327-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0327-2

This article is cited by

Search

Quick links