Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia

Abstract

Targeting B-cell receptor signaling using the PI3Kδ inhibitor idelalisib is a highly effective treatment option for relapsed/refractory chronic lymphocytic leukemia (CLL) patients. In addition to its direct impact on tumor cells, PI3Kδ inhibition can modulate the activity of regulatory T-cells (Tregs) resulting in enhanced anti-tumoral immune functions which may contribute to the success of PI3Kδ inhibitors in cancer therapy. The role of Tregs in CLL and their modulation by PI3Kδ inhibitors was so far poorly understood. Using the Eµ-TCL1 adoptive transfer model of CLL, we show that disease development induces the accumulation of activated and highly immunosuppressive Tregs. Depletion of CD25+ Tregs using anti-CD25 antibodies resulted in enhanced CD8+ T-cell activation, effector differentiation, and functional capacity. We further show that pharmacological inhibition of PI3Kδ effectively controlled disease and significantly decreased both CD25+ and CD25 Treg numbers, proliferation and activation status in CLL-bearing mice. Nonetheless, this PI3Kδ-mediated decrease in Tregs did not translate into better CD8+ T-cell function, as PI3Kδ inhibition concomitantly abrogated T-cell receptor signaling in CD8+ T-cells leading to decreased activation, effector cell differentiation and proliferation. Collectively, these data highlight the strong immunomodulatory effects of PI3Kδ inhibitors in CLL and are of relevance for a rational design of idelalisib-based combination therapies in CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50.

    PubMed  CAS  Google Scholar 

  2. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

    PubMed  CAS  Google Scholar 

  3. Fischer K, Cramer P, Busch R, Bottcher S, Bahlo J, Schubert J, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012;30:3209–16.

    CAS  Google Scholar 

  4. Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013;34:592–601.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    PubMed  PubMed Central  Google Scholar 

  7. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15:1090–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3Kdelta and primary immunodeficiencies. Nat Rev Immunol. 2016;16:702–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3:317–30.

    PubMed  CAS  Google Scholar 

  11. Burris HA 3rd, Flinn IW, Patel MR, Fenske TS, Deng C, et al. Umbralisib, a novel PI3Kdelta and casein kinase-1epsilon inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. The Lancet Oncology. 2018;19:486–96.

    PubMed  CAS  Google Scholar 

  12. Flinn IW, O'Brien S, Kahl B, Patel M, Oki Y, Foss FF, et al. Duvelisib, a novel oral dual inhibitor of PI3K-delta,gamma, is clinically active in advanced hematologic malignancies. Blood. 2018;131:877–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116:2078–88.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118:3603–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016;128:331–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E, et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science. 2002;297:1031–4.

    PubMed  CAS  Google Scholar 

  17. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16:599–611.

    PubMed  CAS  Google Scholar 

  19. von Boehmer H, Daniel C. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov. 2013;12:51–63.

    Google Scholar 

  20. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014;510:407–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106:2018–25.

    PubMed  CAS  Google Scholar 

  22. Weiss L, Melchardt T, Egle A, Grabmer C, Greil R, Tinhofer I. Regulatory T cells predict the time to initial treatment in early stage chronic lymphocytic leukemia. Cancer. 2010;117:2163–9.

    PubMed  Google Scholar 

  23. D’Arena G, Laurenti L, Minervini MM, Deaglio S, Bonello L, De Martino L, et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res. 2011;35:363–8.

    PubMed  Google Scholar 

  24. D’Arena G, Simeon V, D’Auria F, Statuto T, Sanzo PD, Martino LD, et al. Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander? Am J Blood Res. 2013;3:52–7.

    PubMed  PubMed Central  Google Scholar 

  25. Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131:1617–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA. 2002;99:6955–60.

    PubMed  CAS  Google Scholar 

  27. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. 2011;208:1279–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30:570–9.

    PubMed  CAS  Google Scholar 

  29. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126:203–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Yahiaoui A, Meadows SA, Sorensen RA, Cui ZH, Keegan KS, Brockett R, et al. PI3Kdelta inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kdelta and BTK inhibitors. PLoS ONE 2017;12:e0171221.

    PubMed  PubMed Central  Google Scholar 

  31. McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D., et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Emicro-TCL1 CLL mouse model. Blood. 2015;126:212–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J. Foxp3(+) CD25(–) CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci USA. 2005;102:4091–6.

    PubMed  CAS  Google Scholar 

  33. Hanna BS, Roessner PM, Yazdanparast H, Colomer D, Campo E, Kugler S, et al. Control of chronic lymphocytic leukemia development by clonally-expanded CD8+ T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia. 2018. https://doi.org/10.1038/s41375-018-0250-6. [Epub ahead of print].

  34. DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y, et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia. 2013;27:170–82.

    PubMed  CAS  Google Scholar 

  35. Saulep-Easton D, Vincent FB, Quah PS, Wei A, Ting SB, Croce CM, et al. The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells. Leukemia. 2016;30:163–72.

    PubMed  CAS  Google Scholar 

  36. Jitschin R, Braun M, Buttner M, Dettmer-Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124:750–60.

    PubMed  CAS  Google Scholar 

  37. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    CAS  Google Scholar 

  38. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121:1612–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118:2427–37.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.

    PubMed  CAS  Google Scholar 

  41. Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, et al. Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2006;177:6598–602.

    PubMed  CAS  Google Scholar 

  42. Pearce VQ, Bouabe H, MacQueen AR, Carbonaro V, Okkenhaug K. PI3Kdelta Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. J Immunol. 2015;195:3206–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Gracias DT, Boesteanu AC, Fraietta JA, Hope JL, Carey AJ, Mueller YM, et al. Phosphatidylinositol 3-Kinase p110delta Isoform Regulates CD8+ T Cell Responses during Acute Viral and Intracellular Bacterial Infections. J Immunol. 2016;196:1186–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Putz EM, Prchal-Murphy M, Simma OA, Forster F, Koenig X, Stockinger H, et al. PI3Kdelta is essential for tumor clearance mediated by cytotoxic T lymphocytes. PLoS ONE 2012;7:e40852.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Zebedin E, Simma O, Schuster C, Putz EM, Fajmann S, Warsch W, et al. Leukemic challenge unmasks a requirement for PI3Kdelta in NK cell-mediated tumor surveillance. Blood. 2008;112:4655–64.

    PubMed  CAS  Google Scholar 

  46. Zitvogel L, Kroemer G. The dilemma of anticancer therapy: tumor-specific versus immune effects. Blood. 2008;112:4364–5.

    PubMed  CAS  Google Scholar 

  47. Lampson BL, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids MS, et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood. 2016;128:195–203.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Zelenetz AD, Barrientos JC, Brown JR, Coiffier B, Delgado J, Egyed M, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2017;18:297–311.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015;126:573–81.

    PubMed  CAS  Google Scholar 

  50. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Barbi J, Cummings HE, Lu B, Oghumu S, Ruckle T, Rommel C, et al. PI3Kgamma (PI3Kgamma) is essential for efficient induction of CXCR3 on activated T cells. Blood. 2008;112:3048–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Alcazar I, Marques M, Kumar A, Hirsch E, Wymann M, Carrera AC, et al. Phosphoinositide 3-kinase gamma participates in T cell receptor-induced T cell activation. J Exp Med. 2007;204:2977–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Moreira J, Rabe KG, Cerhan JR, Kay NE, Wilson JW, Call TG, et al. Infectious complications among individuals with clinical monoclonal B-cell lymphocytosis (MBL): a cohort study of newly diagnosed cases compared to controls. Leukemia. 2013;27:136–41.

    PubMed  CAS  Google Scholar 

  54. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8:328rv4.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the German José Carreras Foundation (R14/23) to MS, the DFG (SFB1074 project B1) to StSt, AS, and BMCJ, the BMBF-Network “PRECiSe” (031L0076A) and the ERA-NET TRANSCAN-2 program JTC 2014–project FIRE-CLL to StSt, PL, and MS. PMR was supported by the German Cancer Aid grant number 112069.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bola S. Hanna or Martina Seiffert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, B.S., Roessner, P.M., Scheffold, A. et al. PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia 33, 1427–1438 (2019). https://doi.org/10.1038/s41375-018-0318-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0318-3

This article is cited by

Search

Quick links