Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

Flow cytometry for fast screening and automated risk assessment in systemic light-chain amyloidosis

Abstract

Early diagnosis and risk stratification are key to improve outcomes in light-chain (AL) amyloidosis. Here we used multidimensional-flow-cytometry (MFC) to characterize bone marrow (BM) plasma cells (PCs) from a series of 166 patients including newly-diagnosed AL amyloidosis (N = 94), MGUS (N = 20) and multiple myeloma (MM, N = 52) vs. healthy adults (N = 30). MFC detected clonality in virtually all AL amyloidosis (99%) patients. Furthermore, we developed an automated risk-stratification system based on BMPCs features, with independent prognostic impact on progression-free and overall survival of AL amyloidosis patients (hazard ratio: ≥ 2.9;P ≤ .03). Simultaneous assessment of the clonal PCs immunophenotypic protein expression profile and the BM cellular composition, mapped AL amyloidosis in the crossroad between MGUS and MM; however, lack of homogenously-positive CD56 expression, reduction of B-cell precursors and a predominantly-clonal PC compartment in the absence of an MM-like tumor PC expansion, emerged as hallmarks of AL amyloidosis (ROC-AUC = 0.74;P < .001), and might potentially be used as biomarkers for the identification of MGUS and MM patients, who are candidates for monitoring pre-symptomatic organ damage related to AL amyloidosis. Altogether, this study addressed the need for consensus on how to use flow cytometry in AL amyloidosis, and proposes a standardized MFC-based automated risk classification ready for implementation in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Merlini GAL. amyloidosis: from molecular mechanisms to targeted therapies. Hematol Am Soc Hematol Educ Progr. 2017;2017:1–12.

    Article  Google Scholar 

  2. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108:2520–30.

    Article  CAS  Google Scholar 

  3. Merlini G, Palladini G. Light chain amyloidosis: the heart of the problem. Haematol Italy. 2013;98:1492–5. p.

    Article  CAS  Google Scholar 

  4. Merlini G, Wechalekar AD, Palladini G. Systemic light chain amyloidosis: an update for treating physicians. Blood. 2013;121:5124–30.

    Article  CAS  Google Scholar 

  5. Merlini G, Palladini G. Differential diagnosis of monoclonal gammopathy of undetermined significance. Hematol Am Soc Hematol Educ Progr. 2012;2012:595–603.

    Google Scholar 

  6. Paiva B, Martinez-Lopez J, Corchete LA, Sanchez-Vega B, Rapado I, Puig N, et al. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis. Blood. 2016;127:3035–9.

    Article  CAS  Google Scholar 

  7. Milani P, Valentini V, Ferraro G, Basset M, Russo F, Foli A, et al. A patient with AL amyloidosis with negative free light chain results. Clin Chem Lab Med. 2016;54:1035–7.

    Article  CAS  Google Scholar 

  8. Milani P, Murray DL, Barnidge DR, Kohlhagen MC, Mills JR, Merlini G, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am J Hematol. 2017;92:772–9.

    Article  CAS  Google Scholar 

  9. Kourelis TV, Dasari S, Theis JD, Ramirez-Alvarado M, Kurtin PJ, Gertz MA, et al. Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry. Blood. 2017;129:299–306.

    Article  CAS  Google Scholar 

  10. Flores-Montero J, Flores LS, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S, et al. Next generation flow (NGF) for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31:2094–103.

    Article  CAS  Google Scholar 

  11. Schonland S, Hegenbart U. Flow in a fibril-forming disease. Blood. 2017;129:7–8.

    Article  Google Scholar 

  12. Paiva B, Montes MC, Garcia-Sanz R, Ocio EM, Alonso J, de Las Heras N, et al. Multiparameter flow cytometry for the identification of the Waldenstrom’s clone in IgM-MGUS and Waldenstrom’s Macroglobulinemia: new criteria for differential diagnosis and risk stratification. Leukemia. 2014;28:166–73.

    Article  CAS  Google Scholar 

  13. Paiva B, Chandia M, Vidriales MB, Colado E, Caballero-Velazquez T, Escalante F. et al. Multiparameter flow cytometry for staging of solitary bone plasmacytoma: new criteria for risk of progression to myeloma. Blood [Internet]. 2014;124:1300–3.

    Article  CAS  Google Scholar 

  14. Paiva B, Vidriales MB, Mateo G, Perez JJ, Montalban MA, Sureda A, et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 2009;114:4369–72.

    Article  CAS  Google Scholar 

  15. Paiva B, Vidriales MB, Rosinol L, Martinez-Lopez J, Mateos MV, Ocio EM. et al. A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leuk [Internet]. 2013;27:2056–61.

    Article  CAS  Google Scholar 

  16. Paiva B, Vidriales MB, Perez JJ, Lopez-Berges MC, Garcia-Sanz R, Ocio EM, et al. The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis. Blood. 2011;117:3613–6.

    Article  CAS  Google Scholar 

  17. Muchtar E, Jevremovic D, Dispenzieri A, Dingli D, Buadi FK, Lacy MQ, et al. The prognostic value of multiparametric flow cytometry in AL amyloidosis at diagnosis and at the end of first-line treatment. Blood. 2017;129:82–7.

    Article  CAS  Google Scholar 

  18. Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol. 2005;79:319–28.

    Article  Google Scholar 

  19. Gillmore JD, Wechalekar A, Bird J, Cavenagh J, Hawkins S, Kazmi M, et al. Guidelines on the diagnosis and investigation of AL amyloidosis. Br J Haematol. 2015;168:207–18.

    Article  CAS  Google Scholar 

  20. Comenzo RL, Reece D, Palladini G, Seldin D, Sanchorawala V, Landau H, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia. 2012;26:2317–25.

    Article  CAS  Google Scholar 

  21. Dispenzieri A, Gertz MA, Kyle RA, Lacy MQ, Burritt MF, Therneau TM, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22:3751–7.

    Article  CAS  Google Scholar 

  22. Sidana S, Tandon N, Dispenzieri A, Gertz MA, Dingli D, Jevremovic D, et al. Prognostic significance of circulating plasma cells by multi-parametric flow cytometry in light chain amyloidosis. Leukemia. 2018;32:1421–6.

    Article  CAS  Google Scholar 

  23. Lee H, Duggan P, Neri P, Tay J, Bahlis NJ, Jimenez-Zepeda VH. Minimal residual disease (MRD) assessment by flow cytometry after ASCT for AL amyloidosis: are we there yet? Bone Marrow Transplant. 2017;52:915–7.

    Article  CAS  Google Scholar 

  24. Lisenko K, Schonland SO, Jauch A, Andrulis M, Rocken C, Ho AD, et al. Flow cytometry-based characterization of underlying clonal B and plasma cells in patients with light chain amyloidosis. Cancer Med. 2016;5:1464–72.

    Article  CAS  Google Scholar 

  25. Flanders A, Stetler-Stevenson M, Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood [Internet]. 2013;122:1088–9.

    Article  CAS  Google Scholar 

  26. Tovar N, Rodriguez-Lobato LG, Cibeira MT, Magnano L, Isola I, Rosinol L, et al. Bone marrow plasma cell infiltration in light chain amyloidosis: impact on organ involvement and outcome. Amyloid Int J Exp Clin Investig. 2018;25:79–85.

    Article  CAS  Google Scholar 

  27. Bochtler T, Hegenbart U, Kunz C, Granzow M, Benner A, Seckinger A, et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J Clin Oncol. 2015;33:1371–8.

    Article  CAS  Google Scholar 

  28. Muchtar E, Dispenzieri A, Kumar SK, Ketterling RP, Dingli D, Lacy MQ, et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia. 2017;31:1562–9.

    Article  CAS  Google Scholar 

  29. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30:989–95.

    Article  CAS  Google Scholar 

  30. Filipova J, Rihova L, Vsianska P, Kufova Z, Kryukova E, Kryukov F, et al. Flow cytometry in immunoglobulin light chain amyloidosis: short review. Leuk Res. 2015;pii: S0145-2126(15)30345-3. https://doi.org/10.1016/j.leukres.2015.07.002.

    Article  CAS  Google Scholar 

  31. Sidana S, Tandon N, Dispenzieri A, Gertz MA, Buadi FK, Lacy MQ, et al. Clinical presentation and outcomes in light chain amyloidosis patients with non-evaluable serum free light chains. Leukemia. 2017;32:729–35.

    Article  Google Scholar 

  32. Milani P, Basset M, Russo F, Foli A, Merlini G, Palladini G. Patients with light-chain amyloidosis and low free light-chain burden have distinct clinical features and outcome. Blood. 2017;130:625–31.

    Article  CAS  Google Scholar 

  33. Lhermitte L, Mejstrikova E, van der Sluijs-Gelling AJ, Grigore GE, Sedek L, Bras AE, et al. Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia. Leukemia. 2017;32:874–81.

    Article  Google Scholar 

  34. Mateo G, Montalban MA, Vidriales MB, Lahuerta JJ, Mateos MV, Gutierrez N, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26:2737–44.

    Article  Google Scholar 

  35. Arana P, Paiva B, Cedena M-T, Puig N, Cordon L, Vidriales M-B, et al. Prognostic value of antigen expression in multiple myeloma: A PETHEMA/GEM study on 1,265 patients enrolled in four consecutive clinical trials. Leukemia. 2017;32:971–8.

    Article  Google Scholar 

  36. Hayman SR, Bailey RJ, Jalal SM, Ahmann GJ, Dispenzieri A, Gertz MA, et al. Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood. 2001;98:2266–8.

    Article  CAS  Google Scholar 

  37. Bryce AH, Ketterling RP, Gertz MA, Lacy M, Knudson RA, Zeldenrust S, et al. Translocation t(11;14) and survival of patients with light chain (AL) amyloidosis. Haematologica. 2009;94:380–6.

    Article  CAS  Google Scholar 

  38. Bochtler T, Hegenbart U, Heiss C, Benner A, Moos M, Seckinger A, et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood. 2011;117:3809–15.

    Article  CAS  Google Scholar 

  39. Bochtler T, Hegenbart U, Kunz C, Benner A, Seckinger A, Dietrich S, et al. Gain of chromosome 1q21 is an independent adverse prognostic factor in light chain amyloidosis patients treated with melphalan/dexamethasone. Amyloid. 2014;21:9–17.

    Article  CAS  Google Scholar 

  40. da Silva Filho MI, Forsti A, Weinhold N, Meziane I, Campo C, Huhn S, et al. Genome-wide association study of immunoglobulin light chain amyloidosis in three patient cohorts: comparison with myeloma. Leukemia. 2017;31:1735–42.

    Article  Google Scholar 

  41. Kaufman GP, Schrier SL, Lafayette RA, Arai S, Witteles RM, Liedtke M. Daratumumab yields rapid and deep hematologic responses in patients with heavily pretreated AL amyloidosis. Blood. 2017;130:900–2.

    Article  CAS  Google Scholar 

  42. Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005;19:1376–83.

    Article  CAS  Google Scholar 

  43. Harrison CJ, Mazzullo H, Ross FM, Cheung KL, Gerrard G, Harewood L, et al. Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis. Br J Haematol. 2002;117:427–35.

    Article  CAS  Google Scholar 

  44. Mitrovic Z, Ilic I, Nola M, Aurer I, Sonicki Z, Basic-Kinda S, et al. CD43 expression is an adverse prognostic factor in diffuse large B-Cell lymphoma. Clin Lymphoma Myeloma. 2009;9:133–7.

    Article  CAS  Google Scholar 

  45. Mitrovic Z, Iqbal J, Fu K, Smith LM, Bast M, Greiner TC, et al. CD43 expression is associated with inferior survival in the non-germinal centre B-cell subgroup of diffuse large B-cell lymphoma. Br J Haematol. 2013;162:87–92.

    Article  CAS  Google Scholar 

  46. Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK, et al. Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood. 2017;129:2111–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Centro de Investigación Biomédica en Red – Área de Oncología—del Instituto de Salud Carlos III (CIBERONC; CB16/12/00369, CB16/12/00400 and CB16/12/00489), Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria (FIS No. PI13/02196), Asociación Española Contra el Cáncer (GCB120981SAN and Accelerator Award), the Black Swan Research Initiative of the International Myeloma Foundation, and the European Research Council (ERC) 2015 Starting Grant (MYELOMANEXT). We thank all the investigators that included patients in this study: Abelardo Barez, Albert Oriol, Albert Perez, Alfonso Garcia De Coca, Amaia Balerdi, Angel Ramirez, Cristina Martinez, Daniel Borrego, Elena Cabezudo, Elham Askari, Enrique Ocio, Esther Gonzalez, Felipe Arriba, Felipe Prosper, Gonzalo Caballero, Isabel Krsnik, Javier de la Rubia, Javier Marco, Jesus San Miguel, Joaquin Martinez-Lopez, Jorge Labrador, Jose Enrique De La Puerta, Jose Julio Hernandez, Jose Luis Sastre, Jose Maria Alonso, Juan Jose Bargay, Juan Jose Gavira, Juan Jose Lahuerta,Luis Palomera, Maria Casanova, Maria Dolores Garcia-Malo, Maria Jesus Blanchard, Maria Jose Cejalvo, Maria Lourdes Elicegui, Maria Sarasa, Maria Victoria Mateos, Martin Mascaro, Martin Nuñez, Mercedes Berenguer, Mercedes Gironella, Noemi Puig, Norma Gutiérrez, Perla Salama Bendayan, Rafael Del Orbe,Rafael Ríos, Ramon Garcia-Sanz,Ramon Lecumberri, Rebeca Cuello, Roberto Hernandez, Rosa Lopez, Valentin Cabañas, Vicente Carrasco, and Tomas Gonzalez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Paiva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puig, N., Paiva, B., Lasa, M. et al. Flow cytometry for fast screening and automated risk assessment in systemic light-chain amyloidosis. Leukemia 33, 1256–1267 (2019). https://doi.org/10.1038/s41375-018-0308-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0308-5

This article is cited by

Search

Quick links