Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells

Abstract

Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. T(4;14) MM overexpresses multiple myeloma SET domain-containing protein (MMSET). MMSET has three major isoforms: the full-length form MMSET II and the short isoforms REIIBP and MMSET I. Here we show that the short isoform MMSET I is an oncoprotein that promoted cell survival and tumorigenesis in vitro and in vivo. Gene expression array analysis indicated that MMSET I increased glyoxalase I (GLO1) expression. Chromatin immunoprecipitation (ChIP) coupled with qPCR indicated that MMSET I bound upstream of the GLO1 transcription start site. Ectopic overexpression of MMSET I or its mutants showed MMSET I depended on its C terminus to regulate GLO1 expression. GLO1 knockdown (KD) induced apoptosis and reduced colony formation. MMSET I or GLO1 KD reduced the levels of anti-apoptosis factors such as MCL1 and BCL2. Ectopic overexpression of GLO1 resulted in the significant rescue of KMS11 cells from MMSET I KD-induced apoptosis and glycolysis inhibition. This suggested that GLO1 may be of functional importance target downstream of MMSET I. Cumulatively, our study suggests that MMSET I is an oncoprotein and potential therapeutic target for t(4;14) MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lauring J, Abukhdeir AM, Konishi H, Garay JP, Gustin JP, Wang Q, et al. The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood. 2008;111:856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23:6333–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bergsagel PL, Kuehl WM. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev. 2003;194:96–104.

    Article  CAS  PubMed  Google Scholar 

  4. Keats JJ, Reiman T, Belch AR, Pilarski LM. Ten years and counting: so what do we know about t(4;14)(p16; q32) multiple myeloma. Leuk Lymphoma. 2006;47:2289–2300.

    Article  CAS  PubMed  Google Scholar 

  5. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, et al. In multiple myeloma, t(4;14)(p16; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520–9.

    Article  CAS  PubMed  Google Scholar 

  6. Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J Jr. A subset of multiple myeloma harboring the t(4;14)(p16; q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood. 2003;101:2374–6.

    Article  CAS  PubMed  Google Scholar 

  7. Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16; q32)-positive multiple myeloma patients. Blood. 2005;105:4060–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, et al. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem. 2005;280:35261–71.

    Article  CAS  PubMed  Google Scholar 

  9. Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J, et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell. 2011;44:609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood. 2008;111:3145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brito JL, Walker B, Jenner M, Dickens NJ, Brown NJ, Ross FM, et al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica. 2009;94:78–86.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L, et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood. 2011;117:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie Z, Bi C, Chooi JY, Chan ZL, Mustafa N, Chng WJ. MMSET regulates expression of IRF4 in t(4;14) myeloma and its silencing potentiates the effect of bortezomib. Leukemia. 2015;29:2347–54.

    Article  CAS  PubMed  Google Scholar 

  14. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45.

    Article  CAS  PubMed  Google Scholar 

  15. Ni J, Cozzi PJ, Hao JL, Beretov J, Chang L, Duan W, et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate. 2014;74:602–17.

    Article  CAS  PubMed  Google Scholar 

  16. Tjhay F, Motohara T, Tayama S, Narantuya D, Fujimoto K, Guo J, et al. CD44 variant 6 is correlated with peritoneal dissemination and poor prognosis in patients with advanced epithelial ovarian cancer. Cancer Sci. 2015;106:1421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen XY, Wang ZC, Li H, Cheng XX, Sun Y, Wang XW, et al. Nuclear translocations of beta-catenin and TCF4 in gastric cancers correlate with lymph node metastasis but probably not with CD44 expression. Hum Pathol. 2005;36:1294–301.

    CAS  PubMed  Google Scholar 

  18. Castiglioni F, Tagliabue E, Campiglio M, Pupa SM, Balsari A, Menard S. Role of exon-16-deleted HER2 in breast carcinomas. Endocr Relat Cancer. 2006;13:221–32.

    Article  CAS  PubMed  Google Scholar 

  19. Kwong KY, Hung MC. A novel splice variant of HER2 with increased transformation activity. Mol Carcinog. 1998;23:62–68.

    Article  CAS  PubMed  Google Scholar 

  20. Agrawal S, Eng C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet. 2006;15:777–87.

    Article  CAS  PubMed  Google Scholar 

  21. Okumura N, Yoshida H, Kitagishi Y, Nishimura Y, Matsuda S. Alternative splicings onp53, BRCA1 and PTEN genes involved in breast cancer. Biochem Biophys Res Commun. 2011;413:395–9.

    Article  CAS  PubMed  Google Scholar 

  22. Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 2015;43:5130–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene. 2014;33:5311–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tang JY, Lee JC, Hou MF, Wang CL, Chen CC, Huang HW, et al. Alternative splicing for diseases, cancers, drugs, and databases. Sci World J. 2013;2013:703568.

    Google Scholar 

  25. Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene. 2015;34:1–14.

    Article  PubMed  CAS  Google Scholar 

  26. Prinos P, Garneau D, Lucier JF, Gendron D, Couture S, Boivin M, et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol. 2011;18:673–9.

    Article  CAS  PubMed  Google Scholar 

  27. Tammaro C, Raponi M, Wilson DI, Baralle D. BRCA1 exon 11 alternative splicing, multiple functions and the association with cancer. Biochem Soc Trans. 2012;40:768–72.

    Article  CAS  PubMed  Google Scholar 

  28. Stec I, Wright TJ, van Ommen GJ, de Boer PA, van Haeringen A, Moorman AF, et al. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet. 1998;7:1071–82.

    Article  CAS  PubMed  Google Scholar 

  29. Xie Z, Chng WJ. MMSET: role and therapeutic opportunities in multiple myeloma. Biomed Res Int. 2014;2014:636514.

    PubMed  PubMed Central  Google Scholar 

  30. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92:3025–34.

    Article  CAS  PubMed  Google Scholar 

  31. Garlisi CG, Uss AS, Xiao H, Tian F, Sheridan KE, Wang L, et al. A unique mRNA initiated within a middle intron of WHSC1/MMSET encodes a DNA binding protein that suppresses human IL-5 transcription. Am J Respir Cell Mol Biol. 2001;24:90–98.

    Article  CAS  PubMed  Google Scholar 

  32. Lazareth A, Song XY, Coquin A, Harel S, Karlin L, Belhadj K, et al. MB4-2 breakpoint in MMSET combined with del(17p) defines a subset of t(4;14) multiple myeloma with very poor prognosis. Haematologica. 2015;100:e471–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood. 2011;118:4771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM. Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr. 2008;39:25–31.

    Article  CAS  Google Scholar 

  35. Xie Z, Gunaratne J, Cheong LL, Liu SC, Koh TL, Huang G, et al. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma. Oncotarget. 2013;4:1008–18.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xie Z, Bi C, Cheong LL, Liu SC, Huang G, Zhou J, et al. Determinants of sensitivity to DZNep induced apoptosis in multiple myeloma cells. PLoS ONE. 2011;6:e21583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kho PS, Wang Z, Zhuang L, Li Y, Chew JL, Ng HH, et al. p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem. 2004;279:21183–92.

    Article  CAS  PubMed  Google Scholar 

  38. Ozvaran MK, Cao XX, Miller SD, Monia BA, Hong WK, Smythe WR. Antisense oligonucleotides directed at the bcl-xl gene product augment chemotherapy response in mesothelioma. Mol Cancer Ther. 2004;3:545–50.

    CAS  PubMed  Google Scholar 

  39. Yusufi FNK, Lakshmanan M, Ho YS, Loo BLW, Ariyaratne P, Yang Y, et al. Mammalian systems biotechnology reveals global cellular adaptations in a recombinant CHO cell line. Cell Syst. 2017;4:530–42 e536.

    Article  CAS  PubMed  Google Scholar 

  40. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA. 1996;93:13931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang H, Sloan S, Li D, Zhuang L, Yi QL, Chen CI, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol. 2004;125:64–68.

    Article  PubMed  Google Scholar 

  42. Geng X, Ma J, Zhang F, Xu C. Glyoxalase I in tumor cell proliferation and survival and as a potential target for anticancer therapy. Oncol Res Treat. 2014;37:570–4.

    Article  CAS  PubMed  Google Scholar 

  43. Allaman I, Belanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci. 2015;9:23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xue M, Rabbani N, Thornalley PJ. Glyoxalase in ageing. Semin Cell Dev Biol. 2011;22:293–301.

    Article  CAS  PubMed  Google Scholar 

  45. Thornalley PJ, Rabbani N. Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol. 2011;22:318–25.

    Article  CAS  PubMed  Google Scholar 

  46. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  47. Hosoda F, Arai Y, Okada N, Shimizu H, Miyamoto M, Kitagawa N, et al. Integrated genomic and functional analyses reveal glyoxalase I as a novel metabolic oncogene in human gastric cancer. Oncogene. 2015;34:1196–206.

    Article  CAS  PubMed  Google Scholar 

  48. Santarius T, Bignell GR, Greenman CD, Widaa S, Chen L, Mahoney CL, et al. GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer. 2010;49:711–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang S, Liang X, Zheng X, Huang H, Chen X, Wu K, et al. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma. Int J Clin Exp Pathol. 2014;7:2079–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taniguchi H, Horinaka M, Yoshida T, Yano K, Goda AE, Yasuda S, et al. Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules. Mol Cancer Ther. 2012;11:2294–2300.

    Article  CAS  PubMed  Google Scholar 

  51. Guo Y, Zhang Y, Yang X, Lu P, Yan X, Xiao F, et al. Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol Ther. 2016;17:169–80.

    Article  CAS  PubMed  Google Scholar 

  52. Rabbani N, Xue M, Weickert MO, Thornalley PJ. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology-Involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy. Semin Cancer Biol. 2018;49:83–93.

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Duan Z, Nugent Z, Zou JX, Borowsky AD, Zhang Y, et al. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes. Cancer Lett. 2016;378:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. di Luccio E. Inhibition of nuclear receptor binding SET domain 2/multiple myeloma SET domain by LEM-06 implication for epigenetic cancer therapies. J Cancer Prev. 2015;20:113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tisi D, Chiarparin E, Tamanini E, Pathuri P, Coyle JE, Hold A, et al. Structure of the epigenetic oncogene MMSET and inhibition by N-alkyl sinefungin derivatives. ACS Chem Biol. 2016;11:3093–105.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Medical Research Council of Singapore grant NMRC/OFYIRG/0010/2016. WJC is supported by NMRC Singapore Translational Research (STaR) Investigatorship. This research is partly supported by the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative as well as the RNA Biology Center at the Cancer Science Institute of Singapore, NUS, as part of funding under the Singapore Ministry of Education’s Tier 3 grants, grant number MOE2014-T3-1-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wee Joo Chng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Chooi, J.Y., Toh, S.H.M. et al. MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells. Leukemia 33, 739–748 (2019). https://doi.org/10.1038/s41375-018-0300-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0300-0

This article is cited by

Search

Quick links