Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic myeloproliferative neoplasms

JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation


Pegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30–40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response. Retrospective analysis of MPN patients treated with peg-IFNa demonstrated that patients harboring the JAK2V617F mutation were more likely to achieve PMR than those with mutated CALR (p = 0.004), while there was no significant difference in hematological response. In vitro experiments confirmed an upregulation of IFN-stimulated genes in JAK2V617F-positive 32D cells as well as patient samples (peripheral blood mononuclear cells and CD34+ hematopoietic stem cells) compared to their CALR-mutated counterparts, and higher IFNa doses were needed to achieve the same IFNa response in CALR− as in JAK2V617F-mutant 32D cells. Additionally, Janus-activated kinase-1 (JAK1) and signal transducers and activators of transcription 1 (STAT1) showed constitutive phosphorylation in JAK2V617F-mutated but not CALR-mutated cells, indicating priming towards an IFNa response. Moreover, IFN-induced growth arrest was counteracted by selective JAK1 inhibition but enhanced by JAK2 inhibition. In conclusion, our data suggest that, clinically, higher doses of IFNa are needed in CALR-mutated vs. JAK2V617F-positive patients and we suggest a model of JAK2V617F-JAK1/STAT1 crosstalk leading to a priming of JAK2V617F-positive cells to IFNa resulting in differential sensitivity

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    CAS  Article  Google Scholar 

  2. 2.

    Broseus J, Park JH, Carillo S, Hermouet S, Girodon F. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124:3964–6.

    CAS  Article  Google Scholar 

  3. 3.

    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    CAS  Article  Google Scholar 

  4. 4.

    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    CAS  Article  Google Scholar 

  5. 5.

    Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.

    CAS  Article  Google Scholar 

  6. 6.

    Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.

    CAS  Article  Google Scholar 

  7. 7.

    Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant c-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81.

    CAS  Article  Google Scholar 

  8. 8.

    Nivarthi H, Chen D, Cleary C, Kubesova B, Jager R, Bogner E, et al. Thrombopoietin receptor is required for the oncogenic function of CALR mutants. Leukemia. 2016;30:1759–63.

    CAS  Article  Google Scholar 

  9. 9.

    Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127:1317–24.

    CAS  Article  Google Scholar 

  10. 10.

    Han L, Schubert C, Kohler J, Schemionek M, Isfort S, Brummendorf TH, et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol. 2016;9:45.

    Article  Google Scholar 

  11. 11.

    Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA. 2005;102:18962–7.

    CAS  Article  Google Scholar 

  12. 12.

    Pradhan A, Lambert QT, Griner LN, Reuther GW. Activation of JAK2-V617F by components of heterodimeric cytokine receptors. J Biol Chem. 2010;285:16651–63.

    CAS  Article  Google Scholar 

  13. 13.

    Pradhan A, Lambert QT, Reuther GW. Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci USA. 2007;104:18502–7.

    CAS  Article  Google Scholar 

  14. 14.

    Majoros A, Platanitis E, Kernbauer-Holzl E, Rosebrock F, Muller M, Decker T. Canonical and non-canonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses. Front Immunol. 2017;8:29.

    Article  Google Scholar 

  15. 15.

    Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016;30:776–81.

    CAS  Article  Google Scholar 

  16. 16.

    Cassinat B, Verger E, Kiladjian JJ. Interferon alfa therapy in CALR-mutated essential thrombocythemia. N Engl J Med. 2014;371:188–9.

    CAS  Article  Google Scholar 

  17. 17.

    Verger E, Cassinat B, Chauveau A, Dosquet C, Giraudier S, Schlageter MH, et al. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood. 2015;126:2585–91.

    CAS  Article  Google Scholar 

  18. 18.

    Kjaer L, Cordua S, Holmstrom MO, Thomassen M, Kruse TA, Pallisgaard N, et al. Differential dynamics of CALR mutant allele burden in myeloproliferative neoplasms during interferon alfa treatment. PLoS ONE. 2016;11:e0165336.

    Article  Google Scholar 

  19. 19.

    Kjaer L, Holmstrom MO, Cordua S, Andersen MH, Svane IM, Thomassen M, et al. Sorted peripheral blood cells identify CALR mutations in B- and T-lymphocytes. Leuk Lymphoma. 2018;59:973–7.

    CAS  Article  Google Scholar 

  20. 20.

    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    CAS  Article  Google Scholar 

  21. 21.

    Barosi G, Birgegard G, Finazzi G, Griesshammer M, Harrison C, Hasselbalch HC, et al. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood. 2009;113:4829–33.

    CAS  Article  Google Scholar 

  22. 22.

    Tefferi A, Cervantes F, Mesa R, Passamonti F, Verstovsek S, Vannucchi AM, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122:1395–8.

    CAS  Article  Google Scholar 

  23. 23.

    Quintas-Cardama A, Abdel-Wahab O, Manshouri T, Kilpivaara O, Cortes J, Roupie AL, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood. 2013;122:893–901.

    CAS  Article  Google Scholar 

  24. 24.

    Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol. 2007;136:745–51.

    CAS  Article  Google Scholar 

  25. 25.

    Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, et al. WHO classification of tumors of hematopoietic and lymphoid tissues. 4th ed; IARC Publications (Lyon) 2008.

  26. 26.

    Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M, et al. Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood. 2011;117:2935–43.

    CAS  Article  Google Scholar 

  27. 27.

    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  Google Scholar 

  28. 28.

    Varemo L, Nielsen J, Nookaew I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013;41:4378–91.

    Article  Google Scholar 

  29. 29.

    Wright HL, Thomas HB, Moots RJ, Edwards SW. Interferon gene expression signature in rheumatoid arthritis neutrophils correlates with a good response to TNFi therapy. Rheumatology (Oxf). 2015;54:188–93.

    CAS  Article  Google Scholar 

  30. 30.

    Bhattacharya S, Zheng H, Tzimas C, Carroll M, Baker DP, Fuchs SY. Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNalpha via accelerating the degradation of its receptor. Blood. 2011;118:4179–87.

    CAS  Article  Google Scholar 

  31. 31.

    Ianotto JC, Chauveau A, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, et al. Benefits and pitfalls of pegylated interferon-alpha2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study. Haematologica. 2018;103:438–46.

    CAS  Article  Google Scholar 

  32. 32.

    Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 2006;25:2358–67.

    CAS  Article  Google Scholar 

  33. 33.

    Piganis RA, De Weerd NA, Gould JA, Schindler CW, Mansell A, Nicholson SE, et al. Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2. J Biol Chem. 2011;286:33811–8.

    CAS  Article  Google Scholar 

  34. 34.

    Song MM, Shuai K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 1998;273:35056–62.

    CAS  Article  Google Scholar 

  35. 35.

    Sakai I, Takeuchi K, Yamauchi H, Narumi H, Fujita S. Constitutive expression of SOCS3 confers resistance to IFN-alpha in chronic myelogenous leukemia cells. Blood. 2002;100:2926–31.

    CAS  Article  Google Scholar 

  36. 36.

    Purandare AV, McDevitt TM, Wan H, You D, Penhallow B, Han X, et al. Characterization of BMS-911543, a functionally selective small-molecule inhibitor of JAK2. Leukemia. 2012;26:280–8.

    CAS  Article  Google Scholar 

  37. 37.

    Wan H, Schroeder GM, Hart AC, Inghrim J, Grebinski J, Tokarski JS, et al. Discovery of a highly selective JAK2 Inhibitor, BMS-911543, for the treatment of myeloproliferative neoplasms. ACS Med Chem Lett. 2015;6:850–5.

    CAS  Article  Google Scholar 

  38. 38.

    Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, et al. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov. 2012;2:512–23.

    CAS  Article  Google Scholar 

  39. 39.

    Pai SG, Kaplan JB, Giles FJ. Long-acting interferon for myeloproliferative neoplasms—an update. Expert Rev Hematol. 2016;9:915–7.

    CAS  Article  Google Scholar 

  40. 40.

    Them NC, Bagienski K, Berg T, Gisslinger B, Schalling M, Chen D, et al. Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg-proline-interferon alpha-2b. Am J Hematol. 2015;90:288–94.

    CAS  Article  Google Scholar 

  41. 41.

    Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3:900–11.

    CAS  Article  Google Scholar 

  42. 42.

    Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE Jr. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA. 1996;93:7673–8.

    CAS  Article  Google Scholar 

  43. 43.

    Tanabe Y, Nishibori T, Su L, Arduini RM, Baker DP, David M. Cutting edge: role of STAT1, STAT3, and STAT5 in IFN-alpha beta responses in T lymphocytes. J Immunol (Baltim, Md: 1950). 2005;174:609–13.

    CAS  Google Scholar 

  44. 44.

    Ho HH, Ivashkiv LB. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem. 2006;281:14111–8.

    CAS  Article  Google Scholar 

  45. 45.

    Wang WB, Levy DE, Lee CK. STAT3 negatively regulates type I IFN-mediated antiviral response. J Immunol (Baltim, Md: 1950). 2011;187:2578–85.

    CAS  Google Scholar 

  46. 46.

    Landolfo S, Guarini A, Riera L, Gariglio M, Gribaudo G, Cignetti A, et al. Chronic myeloid leukemia cells resistant to interferon-alpha lack STAT1 expression. Hematol J. 2000;1:7–14.

    CAS  Article  Google Scholar 

  47. 47.

    Shuai K, Stark GR, Kerr IM, Darnell JE Jr. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Sci (New Y, NY). 1993;261:1744–6.

    CAS  Article  Google Scholar 

  48. 48.

    Majoros A, Platanitis E, Szappanos D, Cheon H, Vogl C, Shukla P, et al. Response to interferons and antibacterial innate immunity in the absence of tyrosine-phosphorylated STAT1. EMBO Rep. 2016;17:367–82.

    CAS  Article  Google Scholar 

  49. 49.

    Ho J, Pelzel C, Begitt A, Mee M, Elsheikha HM, Scott DJ, et al. STAT2 is a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways. PLoS Biol. 2016;14:e2000117.

    Article  Google Scholar 

  50. 50.

    Briscoe J, Rogers NC, Witthuhn BA, Watling D, Harpur AG, Wilks AF, et al. Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO J. 1996;15:799–809.

    CAS  Article  Google Scholar 

  51. 51.

    Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489:155–9.

    CAS  Article  Google Scholar 

  52. 52.

    Li P, Yuan S, Galipeau J. A fusion cytokine coupling GMCSF to IL9 induces heterologous receptor clustering and STAT1 hyperactivation through JAK2 promiscuity. PLoS ONE. 2013;8:e69405.

    CAS  Article  Google Scholar 

  53. 53.

    Zhang Y, Liang R, Chen CW, Mallano T, Dees C, Distler A, et al. JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Ann Rheum Dis. 2017;76:1467–75.

    CAS  Article  Google Scholar 

  54. 54.

    Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.

    CAS  Article  Google Scholar 

  55. 55.

    Gearing DP, Ziegler SF, Comeau MR, Friend D, Thoma B, Cosman D, et al. Proliferative responses and binding properties of hematopoietic cells transfected with low-affinity receptors for leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor. Proc Natl Acad Sci USA. 1994;91:1119–23.

    CAS  Article  Google Scholar 

  56. 56.

    Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP, et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 2010;18:524–35.

    CAS  Article  Google Scholar 

  57. 57.

    Koschmieder S, Mughal TI, Hasselbalch HC, Barosi G, Valent P, Kiladjian JJ, et al. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016;30:1018–24.

    CAS  Article  Google Scholar 

  58. 58.

    Hasselbalch HC, Bjorn ME. MPNs as inflammatory diseases: the evidence, consequences, and perspectives. Mediat Inflamm. 2015;2015:102476.

    Article  Google Scholar 

  59. 59.

    Bjorn ME, de Stricker K, Kjaer L, Ellemann K, Hasselbalch HC. Combination therapy with interferon and JAK1-2 inhibitor is feasible: proof of concept with rapid reduction in JAK2V617F-allele burden in polycythemia vera. Leuk Res Rep. 2014;3:73–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mikkelsen SU, Kjaer L, Bjorn ME, Knudsen TA, Sorensen AL, Andersen CBL, et al. Safety and efficacy of combination therapy of interferon-alpha2 and ruxolitinib in polycythemia vera and myelofibrosis. Cancer Med. 2018;7:3571–3581.

    CAS  Article  Google Scholar 

Download references


This work was in part supported by a research grant from the German Research Foundation to SK (DFG KO2155/6-1 and DJCLS 16 R/2017), and by the Core Facility Flow Cytometry, a Core Facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University. This work was supported by the Chip Facility, a core facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen within the Faculty of Medicine at RWTH Aachen University. Part of this work was generated within the medical thesis work of JC.

Author information



Corresponding author

Correspondence to Steffen Koschmieder.

Ethics declarations

Conflict of interest

THB has received research funding by and provided consultancy to Pfizer and Novartis. JM has received research support by Novartis and AOP Orphan. HCH reports his participation on the advisory committee of Novartis and AOP Orphan as well as research funding by Novartis. TK got travel support by Novartis in 2016. SK reports funding from Novartis and Bristol-Myers Squibb as well as consultancy honoraria from Novartis, Incyte/Ariad, Bristol-Myers Squibb, AOP, CTI, and Shire. The other authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Czech, J., Cordua, S., Weinbergerova, B. et al. JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Leukemia 33, 995–1010 (2019).

Download citation

Further reading


Quick links