Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular targets for therapy

IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective γ-chain cytokines, decreases leukemic T-cell viability

Abstract

Interleukin-15 (IL-15) and IL-2 drive T-cell malignancies including T-cell large granular lymphocyte leukemia (T-LGLL) and HTLV-1 driven adult T-cell leukemia (ATL). Both cytokines share common γ-chain receptors and downstream signaling pathways. T-LGLL is characterized by clonal expansion of cytotoxic T cells and is associated with abnormal JAK/STAT signaling. ATL is an aggressive CD4+ T-cell neoplasm associated with HTLV-1. T-LGLL and ATL share dependence on IL-2 and IL-15 for survival and both diseases lack effective therapies. BNZ-1 is a pegylated peptide designed to specifically bind the γc receptor to selectively block IL-2, IL-15, and IL-9 signaling. We hypothesized that treatment with BNZ-1 would reduce cytokine-mediated proliferation and viability. Our results demonstrated that in vitro treatment of a T-LGLL cell line and ex vivo treatment of T-LGLL patient cells with BNZ-1 inhibited cytokine-mediated viability. Furthermore, BNZ-1 blocked downstream signaling and increased apoptosis. These results were mirrored in an ATL cell line and in ex vivo ATL patient cells. Lastly, BNZ-1 drastically reduced leukemic burden in an IL-15-driven human ATL mouse xenograft model. Thus, BNZ-1 shows great promise as a novel therapy for T-LGLL, ATL, and other IL-2 or IL-15 driven hematopoietic malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6:595–601.

    Article  CAS  Google Scholar 

  2. Waldmann TA. The interleukin-2 receptor. J Biol Chem. 1991;266:2681–4.

    CAS  PubMed  Google Scholar 

  3. Nata T, Basheer A, Cocchi F, Besien R, van, Massoud R, Jacobson S, et al. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J Biol Chem. 2015;290:22338–51.

    Article  CAS  Google Scholar 

  4. Yamagishi M, Watanabe T Molecular Hallmarks of Adult T Cell Leukemia. Front Microbiol [Internet]. 2012 Sep 17 [cited 2017 Sep 12];3. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444139/

  5. Kips JC. Cytokines in asthma. Eur Respir J. 2001;18(34 suppl):24s–33s.

    Article  CAS  Google Scholar 

  6. Wasik MA, Sackstein R, Novick D, Butmarc JR, Zhang Q, Vonderheid EC, et al. Cutaneous CD56+large T-cell lymphoma associated with high serum concentration of IL-2. Hum Pathol. 1996;27:738–44.

    Article  CAS  Google Scholar 

  7. Marzec M, Halasa K, Kasprzycka M, Wysocka M, Liu X, Tobias JW, et al. Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+cutaneous T-cell lymphoma cells. Cancer Res. 2008;68:1083–91.

    Article  CAS  Google Scholar 

  8. Ribeiro ST, Ribot JC, Silva-Santos B. Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Front Immunol [Internet]. 2015 Jan 26 [cited 2018 Mar23];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306313/

  9. Ito M, Zhao N, Zeng Z, Zhou X, Chang C-C, Zu Y. Interleukin-2 Functions in Anaplastic Large Cell Lymphoma Cells through Augmentation of Extracellular Signal-Regulated Kinases 1/2 Activation. Int J Biomed Sci Ijbs. 2011;7:181–90.

    CAS  PubMed  Google Scholar 

  10. Mishra A, Liu S, Sams GH, Curphey DP, Santhanam R, Rush LJ, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell. 2012;22:645–55.

    Article  CAS  Google Scholar 

  11. Tabbó F, Barreca A, Piva R, Inghirami G. ALK Signaling and Target Therapy in Anaplastic Large Cell Lymphoma. Front Oncol [Internet]. 2012 May 11 [cited 2018 Mar22];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355932/

  12. Krejsgaard T, Ralfkiaer U, Clasen-Linde E, Eriksen KW, Kopp KL, Bonefeld CM, et al. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway. J Invest Dermatol. 2011;131:1331–8.

    Article  CAS  Google Scholar 

  13. Dahmoush L, Hijazi Y, Barnes E, Stetler-Stevenson M, Abati A. Adult T-cell leukemia/lymphoma. Cancer Cytopathol. 2002;96:110–6.

    Article  Google Scholar 

  14. Malamut G, El Machhour R, Montcuquet N, Martin-Lannerée S, Dusanter-Fourt I, Verkarre V, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest. 2010;120:2131–43.

    Article  CAS  Google Scholar 

  15. Shah MV, Zhang R, Loughran TP. Never say die: survival signaling in large granular lymphocyte leukemia. Clin Lymphoma Myeloma. 2009;9:S244–53.

    Article  CAS  Google Scholar 

  16. Zhang D, Loughran TP. Large granular lymphocytic leukemia: molecular pathogenesis, clinical manifestations, and treatment. ASH Educ Program Book. 2012;2012:652–9.

    Google Scholar 

  17. Lamy T, Loughran TP. How I treat LGL leukemia. Blood. 2011;117:2764–74.

    Article  CAS  Google Scholar 

  18. Steinway SN, Leblanc F, Loughran TP. The pathogenesis and treatment of large granular lymphocyte leukemia. Blood Rev. 2014;28:87–94.

    Article  CAS  Google Scholar 

  19. Koskela HLM, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–13.

    Article  CAS  Google Scholar 

  20. Jerez A, Clemente MJ, Makishima H, Koskela H, LeBlanc F, Ng KP, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120:3048–57.

    Article  CAS  Google Scholar 

  21. Andersson E, Kuusanmäki H, Bortoluzzi S, Lagström S, Parsons A, Rajala H, et al. Activating somatic mutations outside the SH2-domain of STAT3 in LGL leukemia. Leukemia. 2016;30:1204–8.

    Article  CAS  Google Scholar 

  22. Rajala HLM, Eldfors S, Kuusanmäki H, Adrichem AJ, van, Olson T, Lagström S, et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 2013;121:4541–50.

    Article  CAS  Google Scholar 

  23. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest. 2001;107:351–62.

    Article  CAS  Google Scholar 

  24. Rajala HLM, Porkka K, Maciejewski JP, Loughran TP, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann Med. 2014;46:114–22.

    Article  CAS  Google Scholar 

  25. Küçük C, Jiang B, Hu X, Zhang W, Chan JKC, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015;6:6025.

    Article  Google Scholar 

  26. Zambello R, Facco M, Trentin L, Sancetta R, Tassinari C, Perin A, et al. Interleukin-15 triggers the proliferation and cytotoxicity of granular lymphocytes in patients with lymphoproliferative disease of granular lymphocytes. Blood. 1997;89:201–11.

    CAS  PubMed  Google Scholar 

  27. Chen J, Petrus M, Bamford R, Shih JH, Morris JC, Janik JE, et al. Increased serum soluble IL-15Rα levels in T-cell large granular lymphocyte leukemia. Blood. 2012;119:137–43.

    Article  CAS  Google Scholar 

  28. Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci Usa. 2008;105:16308–13.

    Article  CAS  Google Scholar 

  29. Chen J, Petrus M, Bryant BR, Nguyen VP, Goldman CK, Bamford R, et al. Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood. 2010;116:5948–56.

    Article  CAS  Google Scholar 

  30. Tendler CL, Greenberg SJ, Blattner WA, Manns A, Murphy E, Fleisher T, et al. Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy. Proc Natl Acad Sci Usa. 1990;87:5218–22.

    Article  CAS  Google Scholar 

  31. Mariner JM, Lantz V, Waldmann TA, Azimi N. Human T cell lymphotropic virus type I Tax activates IL-15R alpha gene expression through an NF-kappa B site. J Immunol Balt 1950. 2001;166:2602–9.

    CAS  Google Scholar 

  32. Ju W, Zhang M, Jiang J, Thomas CJ, Oh U, Bryant BR, et al. CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP. Blood. 2011;117:1938–46.

    Article  CAS  Google Scholar 

  33. Waldmann TA, White JD, Goldman CK, Top L, Grant A, Bamford R, et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood. 1993;82:1701–12.

    CAS  PubMed  Google Scholar 

  34. Waldmann TA, Conlon KC, Stewart DM, Worthy TA, Janik JE, Fleisher TA, et al. Phase 1 trial of IL-15 trans presentation blockade using humanized Mik-Beta-1 mAb in patients with T-cell large granular lymphocytic leukemia. Blood. 2013;121:476–84.

    Article  CAS  Google Scholar 

  35. Dubois S, Shou W, Haneline LS, Fleischer S, Waldmann TA, Müller JR. Distinct pathways involving the FK506-binding proteins 12 and 12.6 underlie IL-2-versus IL-15-mediated proliferation of T cells. Proc Natl Acad Sci Usa. 2003;100:14169–74.

    Article  CAS  Google Scholar 

  36. Berkowitz JL, Janik JE, Stewart DM, Jaffe ES, Stetler-Stevenson M, Shih JH, et al. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol Orlando Fla. 2014;155:176–87.

    Article  CAS  Google Scholar 

  37. Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol. 2017;451:66–70.

    Article  CAS  Google Scholar 

  38. Massoud R, Enose-Akahata Y, Tagaya Y, Azimi N, Basheer A, Jacobson S. Common γ-chain blocking peptide reduces in vitro immune activation markers in HTLV-1-associated myelopathy/tropical spastic paraparesis. Proc Natl Acad Sci. 2015;112:11030–5.

    Article  CAS  Google Scholar 

  39. Frohna P, Tagaya Y, Ratnayake A, Doerr N, Basheer A, Al-Mawsawi L, et al. Results from a First-in-Human Study with Bnz-1: A Novel Peptide Inhibitor of IL-2, IL-9 and IL-15 for the Treatment of T-Cell Malignancies That Safely and Selectively Decreases Regulatory T-Cells, Natural Killer Cells, and CD8+Central Memory T-Cells. Blood. 2017;130(Suppl 1):695–695.

    Google Scholar 

  40. Ren T, Yang J, Broeg K, Liu X, Loughran TP Jr., Cheng H. Developing an in vitro model of T cell type of large granular lymphocyte leukemia. Leuk Res. 2013;37:1737–43.

    Article  CAS  Google Scholar 

  41. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol. 1996;24:406–15.

    CAS  PubMed  Google Scholar 

  42. Otani H, Siegel JP, Erdos M, Gnarra JR, Toledano MB, Sharon M, et al. Interleukin (IL)-2 and IL-3 induce distinct but overlapping responses in murine IL-3-dependent 32D cells transduced with human IL-2 receptor beta chain: involvement of tyrosine kinase(s) other than p56lck. Proc Natl Acad Sci Usa. 1992;89:2789–93.

    Article  CAS  Google Scholar 

  43. Maeda M, Shimizu A, Ikuta K, Okamoto H, Kashihara M, Uchiyama T, et al. Origin of human T-lymphotrophic virus I-positive T cell lines in adult T cell leukemia. Anal T Cell Recept gene Rearrange J Exp Med. 1985;162:2169–74.

    CAS  Google Scholar 

  44. Olson KC, Kulling PM, Olson TL, Tan S-F, Rainbow RJ, Feith DJ, et al. Vitamin D decreases STAT phosphorylation and inflammatory cytokine output in T-LGL leukemia. Cancer Biol Ther. 2017;18:290–303.

    Article  CAS  Google Scholar 

  45. Nicot C, Mahieux R, Takemoto S, Franchini G. Bcl-XL is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood. 2000;96:275–81.

    CAS  PubMed  Google Scholar 

  46. Zhang M, Mathews Griner LA, Ju W, Duveau DY, Guha R, Petrus MN, et al. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia. Proc Natl Acad Sci Usa. 2015;112:12480–5.

    Article  CAS  Google Scholar 

  47. Sato N, Sabzevari H, Fu S, Ju W, Petrus MN, Bamford RN, et al. Development of an IL-15-autocrine CD8 T-cell leukemia in IL-15-transgenic mice requires the cis expression of IL-15Rα. Blood. 2011;117:4032–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LGL leukemia patient samples and clinical information were obtained from the LGL Leukemia Registry at the University of Virginia with the assistance of Holly Davis, Bryna Shemo and Andrea Hines. Alexander Wendling and Matthew Schmachtenberg provided excellent technical support while processing patient samples. We thank Yadeliz Adlin Serrano Matos (University of Puerto Rico, Rio Piedras Campus) for assistance with Supplementary Figure 3. We thank Alexander Wendling in the UVA Flow Cytometry Core for assistance with apoptosis assays. NKL cells, a leukemic LGL NK-cell line, were kindly provided by Dr. Howard Young at the National Cancer Institute. We thank Taconic Inc. (Petersburg, NY) for providing the human IL-15 transgenic mice. This research was funded by the National Cancer Institute of the National Institutes of Health under award number R01CA098472, R01CA178393, and P30CA044579 (T.P.L.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funding was provided to T.P.L. by the Bess Family Charitable Fund, the LGL Leukemia Foundation, and a generous anonymous donor. This research was also supported in part by the Intramural Research Program of the National Cancer Institute, Center for Cancer Research (T.A.W).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas A. Waldmann or Thomas P. Loughran Jr..

Ethics declarations

Conflict of interest

Nazli Azimi and Yutaka Tagaya are employed by BIONIZ Therapeutics, the producer of BNZ-1. Thomas Loughran, Jr. and Thomas Waldmann are on the scientific advisory board of BIONIZ Therapeutics. The remaining authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T.T., Yang, J., Zhang, Y. et al. IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective γ-chain cytokines, decreases leukemic T-cell viability. Leukemia 33, 1243–1255 (2019). https://doi.org/10.1038/s41375-018-0290-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0290-y

This article is cited by

Search

Quick links