Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients

Abstract

The consequences of immune dysfunction in B-chronic lymphocytic leukemia (CLL) likely relate to the incidence of serious recurrent infections and second malignancies that plague CLL patients. The well-described immune abnormalities are not able to consistently explain these complications. Here, we report bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients. Numbers of CD34+ BM hematopoietic progenitors responsive in standard colony-forming unit (CFU) assays, including CFU-GM/GEMM and CFU-E, were significantly reduced. Flow cytometry revealed corresponding reductions in frequencies of all hematopoietic stem and progenitor cell (HSPC) subsets assessed in CLL patient marrow. Consistent with the reduction in HSPCs, BM resident monocytes and natural killer cells were reduced, a deficiency recapitulated in blood. Finally, we report increases in protein levels of the transcriptional regulators HIF-1α, GATA-1, PU.1, and GATA-2 in CLL patient BM, providing molecular insight into the basis of HSPC dysfunction. Importantly, PU.1 and GATA-2 were rapidly increased when healthy HSPCs were exposed in vitro to TNFα, a cytokine constitutively produced by CLL B cells. Together, these findings reveal BM hematopoietic dysfunction in untreated CLL patients that provides new insight into the etiology of the complex immunodeficiency state in CLL.

Key points

Cell-intrinsic defects in BM hematopoietic stem and progenitor cells (HSPCs) in untreated CLL patients.

Altered levels of specific nuclear factors regulating HSPC differentiation and function in untreated CLL patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015;126:573–81.

    CAS  PubMed  Google Scholar 

  2. Sala R, Mauro FR, Bellucci R, De Propris MS, Cordone I, Lisci A, et al. Evaluation of marrow and blood haemopoietic progenitors in chronic lymphocytic leukaemia before and after chemotherapy. Eur J Haematol. 1998;61:14–20.

    CAS  PubMed  Google Scholar 

  3. Tsopra OA, Ziros PG, Lagadinou ED, Symeonidis A, Kouraklis-Symeonidis A, Thanopoulou E, et al. Disease-related anemia in chronic lymphocytic leukemia is not due to intrinsic defects of erythroid precursors: a possible pathogenetic role for tumor necrosis factor alpha. Acta Haematol. 2009;121:187–95.

    CAS  PubMed  Google Scholar 

  4. Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA. et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol. 2010;38:301–310.e302.

    CAS  PubMed  Google Scholar 

  5. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7:391–402.

    CAS  PubMed  Google Scholar 

  6. Zhang F-L, Shen G-M, Liu X-L, Wang F, Zhao Y-Z, Zhang J-W. Hypoxia-inducible factor 1–mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions. J Cell Mol Med. 2012;16:1889–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoon D, Ponka P, Prchal JT. Hypoxia. 5. Hypoxia and hematopoiesis. Am J Physiol Cell Physiol. 2011;300:C1215.

    CAS  PubMed  Google Scholar 

  8. Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer. 2016;2:758–70.

    Google Scholar 

  9. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 2010;115:1755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Koczula KM, Ludwig C, Hayden R, Cronin L, Pratt G, Parry H. et al. Metabolic plasticity in CLL: adaptation to the hypoxic niche. Leukemia. 2016;30:65–73.

    CAS  PubMed  Google Scholar 

  11. Valsecchi R, Coltella N, Belloni D, Ponente M, ten Hacken E, Scielzo C, et al. HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood. 2016;127:1987–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Whyatt D, Karis A, Harkes I, Verkerk A, Gillemans N, Elefanty A, et al. The level of the tissue-specific factor GATA-1 affects the cell-cycle machinery. Genes Funct. 1997;1:11–24.

    CAS  PubMed  Google Scholar 

  13. Whyatt D, Lindeboom F, Karis A, Ferreira R, Milot E, Hendriks R, et al. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature. 2000;406:519–24.

    CAS  PubMed  Google Scholar 

  14. Foa R, Massaia M, Cardona S, Tos AG, Bianchi A, Attisano C, et al. Production of tumor necrosis factor alpha by B-cell chronic lymphocytic leukemia cells: a possible regulatory role of TNF in the progression of the disease. Blood. 1990;76:393–400.

    CAS  PubMed  Google Scholar 

  15. Michalevicz R, Porat R, Vechoropoulos M, Baron S, Yanoov M, Cycowitz Z, et al. Restoration of in vitro hematopoiesis in B-chronic lymphocytic leukemia by antibodies to tumor necrosis factor. Leuk Res. 1991;15:111–20.

    CAS  PubMed  Google Scholar 

  16. Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay P, Roederer M. Quality assurance for polychromatic flow cytometry. Nat Protoc. 2006;1:1522–30.

    CAS  PubMed  Google Scholar 

  17. Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK, Roederer M. Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat Protoc. 2012;7:2067–79.

    CAS  PubMed  Google Scholar 

  18. Grigorakaki C, Morceau F, Chateauvieux S, Dicato M, Diederich M. Tumor necrosis factor alpha-mediated inhibition of erythropoiesis involves GATA-1/GATA-2 balance impairment and PU.1 overexpression. Biochem Pharmacol. 2011;82:156–66.

    CAS  PubMed  Google Scholar 

  19. Xiao W, Koizumi K, Nishio M, Endo T, Osawa M, Fujimoto K, et al. Tumor necrosis factor alpha inhibits generation of glycophorin A+ cells by CD34+ cells. Exp Hematol. 2002;30:1238–47.

    CAS  PubMed  Google Scholar 

  20. Cvejic A. Mechanisms of fate decision and lineage commitment during haematopoiesis. Immunol Cell Biol. 2016;94:230–5.

    CAS  PubMed  Google Scholar 

  21. Lunger I, Fawaz M, Rieger MA. Single-cell analyses to reveal hematopoietic stem-cell fate decisions. FEBS Lett. 2017;591:2195–212.

    CAS  PubMed  Google Scholar 

  22. Nakajima H. Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med. 2011;60:47–55.

    CAS  PubMed  Google Scholar 

  23. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15:533–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Arinobu Y, Mizuno S-i, Chong Y, Shigematsu H, Iino T, Iwasaki H. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell. 2007;1:416–27.

    CAS  PubMed  Google Scholar 

  25. Fukuchi Y, Ito M, Shibata F, Kitamura T, Nakajima H. Activation of CCAAT/enhancer-binding protein α or PU.1 in hematopoietic stem cells leads to their reduced self-renewal and proliferation. Stem Cells. 2008;26:3172–81.

    CAS  PubMed  Google Scholar 

  26. Burda P, Laslo P, Stopka T. The role of PU.1 and GATA-1 transcription factors during normal and leukemogenic hematopoiesis. Leukemia. 2010;24:1249–57.

    CAS  PubMed  Google Scholar 

  27. van Lochem EG, van der Velden VHJ, Wind HK, te Marvelde JG, Westerdaal NAC, van Dongen JJM. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytom Part B Clin Cytom. 2004;60B:1–13.

    Google Scholar 

  28. Walsh JC, DeKoter RP, Lee H-J, Smith ED, Lancki DW, Gurish MF, et al. Cooperative and Antagonistic Interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity. 2002;17:665–76. 2002/11/01/

    CAS  PubMed  Google Scholar 

  29. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S, Yoshimoto G, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20:246–59.

    CAS  PubMed  Google Scholar 

  30. Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res. 2012;40:5819–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid-lineage differentiation. Int J Hematol. 2014;100:417–24.

    CAS  PubMed  Google Scholar 

  32. Mizrahi K, Askenasy N. Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation. Blood. 2014;124:176.

    PubMed  Google Scholar 

  33. Rusten LS, Jacobsen SE. Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood. 1995;85:989.

    CAS  PubMed  Google Scholar 

  34. Bojarska-Junak A, Hus I, Szczepanek EW, Dmoszyńska A, Roliński J. Peripheral blood and bone marrow TNF and TNF receptors in early and advanced stages of B-CLL in correlation with ZAP-70 protein and CD38 antigen. Leuk Res. 2008;32:225–33.

    CAS  PubMed  Google Scholar 

  35. Vicente C, Conchillo A, Garcia-Sanchez MA, Odero MD. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol. 2012;82:1–17.

    PubMed  Google Scholar 

  36. Tipping AJ, Pina C, Castor A, Hong D, Rodrigues NP, Lazzari L, et al. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood. 2009;113:2661–72.

    CAS  PubMed  Google Scholar 

  37. Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z, et al. The clinical significance of tumor necrosis factor alpha plasma level in patients having chronic lymphocytic leukemia. Blood. 2002;100:1215–9.

    CAS  PubMed  Google Scholar 

  38. Hartmann EM, Rudelius M, Burger JA, Rosenwald A. CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates. Leuk Lymphoma. 2016;57:563–71.

    CAS  PubMed  Google Scholar 

  39. Sivina M, Hartmann E, Kipps TJ, Rassenti L, Krupnik D, Lerner S, et al. CCL3 (MIP-1alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood. 2011;117:1662–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Gao A, Zhao H, Lu P, Cheng H, Dong F, et al. Leukemia cell infiltration causes defective erythropoiesis partially through MIP-1[alpha]/CCL3. Leukemia. 2016 ;30:1897–908. 09//print

    CAS  PubMed  Google Scholar 

  41. Lotz M, Ranheim E, Kipps TJ. Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J Exp Med. 1994;179:999.

    CAS  PubMed  Google Scholar 

  42. Blank U, Karlsson S. TGF-beta signaling in the control of hematopoietic stem cells. Blood. 2015;125:3542–50.

    CAS  PubMed  Google Scholar 

  43. Fan X, Valdimarsdottir G, Larsson J, Brun A, Magnusson M, Jacobsen SE, et al. Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. J Immunol. 2002;168:755–62.

    CAS  PubMed  Google Scholar 

  44. Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, et al. VEGF regulates haematopoietic stem-cell survival by an internal autocrine loop mechanism. Nature. 2002;417:954–8.

    CAS  PubMed  Google Scholar 

  45. Xue Y, Chen F, Zhang D, Lim S, Cao Y. Tumor-derived VEGF modulates hematopoiesis. J Angiogenes Res. 2009;1:9.

    PubMed  PubMed Central  Google Scholar 

  46. Fortunel NO, Hatzfeld A, Hatzfeld JA. Transforming growth factor beta: pleiotropic role in the regulation of hematopoiesis. Blood. 2000;96:2022–36.

    CAS  PubMed  Google Scholar 

  47. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000;28:885–94.

    CAS  PubMed  Google Scholar 

  48. Zermati Y, Varet B, Hermine O. TGF-β1 drives and accelerates erythroid differentiation in the Epo-dependent UT-7 cell line even in the absence of erythropoietin. Exp Hematol. 2000;28:256–66.

    CAS  PubMed  Google Scholar 

  49. Dong XM, Yin RH, Yang Y, Feng ZW, Ning HM, Dong L, et al. GATA-2 inhibits transforming growth factor-beta signaling pathway through interaction with Smad4. Cell Signal. 2014;26:1089–97.

    CAS  PubMed  Google Scholar 

  50. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin LY, Du LM, Cao K, Huang Y, Yu PF, Zhang LY, et al. Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene. 2016;35:6038–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575–87.

    CAS  PubMed  Google Scholar 

  54. Pando A, Reagan JL, Quesenberry P, Fast LD. Extracellular vesicles in leukemia. Leuk Res. 2018;64:52–60.

    CAS  PubMed  Google Scholar 

  55. Quesenberry PJ, Goldberg L, Aliotta J, Dooner M. Marrow hematopoietic stem cells revisited: they exist in a continuum and are not defined by standard purification approaches; then there are the microvesicles. Front Oncol. 2014;4:56.

    PubMed  PubMed Central  Google Scholar 

  56. Asada N, Takeishi S, Frenette PS. Complexity of bone marrow hematopoietic stem-cell niche. Int J Hematol. 2017;106:45–54.

    PubMed  Google Scholar 

  57. Janel A, Dubois-Galopin F, Bourgne C, Berger J, Tarte K, Boiret-Dupre N, et al. The chronic lymphocytic leukemia clone disrupts the bone marrow microenvironment. Stem Cells Dev. 2014;23:2972–82.

    CAS  PubMed  Google Scholar 

  58. Boissard F, Fournie JJ, Quillet-Mary A, Ysebaert L, Poupot M. Nurse-like cells mediate ibrutinib resistance in chronic lymphocytic leukemia patients. Blood Cancer J. 2015;5:e355.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lagneaux L, Delforge A, Dorval C, Bron D, Stryckmans P. Excessive production of transforming growth factor beta by bone marrow stromal cells in B-cell chronic lymphocytic leukemia inhibits growth of hematopoietic precursors and interleukin-6 production. Blood. 1993;82:2379.

    CAS  PubMed  Google Scholar 

  60. Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V, Mouly E, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 2014;4:1088.

    CAS  PubMed  Google Scholar 

  61. Marsilio S, Khiabanian H, Fabbri G, Vergani S, Scuoppo C, Montserrat E, et al. Somatic CLL mutations occur at multiple distinct hematopoietic maturation stages: documentation and cautionary note regarding cell fraction purity. Leukemia. 2017;32:1040.

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding provided by the Mayo Clinic Center for Biomedical Discovery to K.L.M., W.D., and N.E.K. B.A.M. is supported by a NIH T32 Training Grant in Basic Immunology (NIH AI07425).

Author contributions

B.A.M., H.Z., N.E.K., and K.L.M. designed experiments; B.A.M., H.Z., M.M., K.A.G., and C.R.S. performed and analyzed experiments; B.A.M., N.E.K., and K.L.M. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay L. Medina.

Ethics declarations

Conflict of interest

Research funding has been provided to the institution from Pharmacyclics, Morphosys, and AbbVie for clinical studies in which Dr. Sameer Parikh is a principal investigator. Dr. Sameer Parikh has also participated in Advisory Board meetings of Pharmacyclics, AstraZeneca, and AbbVie (he was not personally compensated for his participation).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manso, B.A., Zhang, H., Mikkelson, M.G. et al. Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia 33, 638–652 (2019). https://doi.org/10.1038/s41375-018-0280-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0280-0

This article is cited by

Search

Quick links