Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem cell transplantation

Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization


Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132:598–611.

    CAS  Article  Google Scholar 

  2. 2.

    Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125:2621–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.

    CAS  Google Scholar 

  4. 4.

    Bernitz JM, Kim HS, MacArthur B, Sieburg H, Moore K. Hematopoietic stem cells count and remember self-renewal divisions. Cell. 2016;167:1296–1309.e10.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17:573–90.

    CAS  PubMed  Google Scholar 

  6. 6.

    Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA. 1999;96:3120–5.

    CAS  PubMed  Google Scholar 

  7. 7.

    van den Brink MR, Burakoff SJ. Cytolytic pathways in haematopoietic stem-cell transplantation. Nat Rev Immunol. 2002;2:273–81.

    PubMed  Google Scholar 

  8. 8.

    Wagner JE, Eapen M, MacMillan ML, Harris RE, Pasquini R, Boulad F, et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood. 2007;109:2256–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gluckman E, Wagner JE. Hematopoietic stem cell transplantation in childhood inherited bone marrow failure syndrome. Bone Marrow Transplant. 2010;41:127–32.

    Google Scholar 

  10. 10.

    Nikiforow S, Ritz J. (2016) Dramatic expansion of HSCs: new possibilities for HSC transplants? Cell Stem Cell. 2008;18:10–12.

    Google Scholar 

  11. 11.

    Dufour C. How I manage patients with Fanconi anaemia. Br J Haematol. 2017;178:32–47.

    PubMed  Google Scholar 

  12. 12.

    de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131:479–87.

    PubMed  Google Scholar 

  13. 13.

    Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood. 2004;103:1580–5.

    CAS  PubMed  Google Scholar 

  14. 14.

    Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I. et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106:3020–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cancelas JA, Williams DA. Stem cell mobilization by beta2-agonists. Nat Med. 2006;12:278–9.

    CAS  PubMed  Google Scholar 

  16. 16.

    Hopman RK, DiPersio JF. Advances in stem cell mobilization. Blood Rev. 2014;8:31–40.

    Google Scholar 

  17. 17.

    Cao LQ, Liu L, Xu LP, Zhang XH, Wang Y, Fan QZ, et al. Correlation between pediatric donor characteristics and cell compositions in mixture allografts of combined G-CSF-mobilized PBSCs and bone marrow allografts. Bone Marrow Transplant. 2018;53:108–10.

    CAS  PubMed  Google Scholar 

  18. 18.

    Flomenberg N, Devine SM, Dipersio JF, Liesveld JL, McCarty JM, Rowley SD. et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood. 2005;106:1867–74.

    CAS  PubMed  Google Scholar 

  19. 19.

    Leotta S, Poidomani M, Mauro E, Spadaro A, Marturano E, Milone G. AMD3100 for urgent PBSC mobilization and allogeneic transplantation from a normal donor after failed marrow harvest. Bone Marrow Transplant. 2011;46:314–6.

    CAS  PubMed  Google Scholar 

  20. 20.

    Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A, et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia. 2011;25:1286–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liu L, Yu Q, Fu S, Wang B, Hu K, Wang L, et al. The CXCR4 antagonist AMD3100 promotes mesenchymal stem cell mobilization in rats preconditioned with the hypoxia-mimicking agent cobalt chloride. Stem Cells Dev. 2018;27:466–478.

    CAS  PubMed  Google Scholar 

  22. 22.

    Hoggatt J, Singh P, Tate TA, Chou BK, Datari SR, Fukuda S, et al. Rapid mobilization reveals a highly engraftable hematopoietic stem cell. Cell. 2018;172:191–204.

    CAS  PubMed  Google Scholar 

  23. 23.

    Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–35.

    CAS  Google Scholar 

  24. 24.

    Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y. Rho GTPases in hematopoiesis and hemopathies. Blood. 2010;115:936–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y. Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci USA. 2007;104:5091–6.

    CAS  PubMed  Google Scholar 

  26. 26.

    Yang L, Zheng Y. Cdc42 - a signal coordinator in hematopoietic stem cell maintenance. Cell Cycle. 2007;6:1445–50.

    CAS  PubMed  Google Scholar 

  27. 27.

    Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10:520–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science. 2003;302:445–9.

    CAS  PubMed  Google Scholar 

  29. 29.

    Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med. 2005;11:886–91.

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang L, Yang L, Filippi MD, Williams DA, Zheng Y. Genetic deletion of Cdc42GAP reveals a role of Cdc42 in erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment. Blood. 2006;107:98–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Peterson JR, Lebensohn AM, Pelish HE, Kirschner MW. Biochemical suppression of small-molecule inhibitors: a strategy to identify inhibitor targets and signaling pathway components. Chem Biol. 2006;13:443–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010;1:100.

    PubMed  Google Scholar 

  33. 33.

    Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7:333–7.

    CAS  Google Scholar 

  34. 34.

    Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell. 2009;4:62–72.

    CAS  PubMed  Google Scholar 

  35. 35.

    Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305:1000–3.

    CAS  PubMed  Google Scholar 

  36. 36.

    Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121:1298–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Surviladze Z, Waller A, Strouse JJ, Bologa C, Ursu O, Salas V, et al. A potent and selective inhibitor of Cdc42 GTPase. Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-2010 Feb 27.

  38. 38.

    Hong L, Kenney SR, Phillips GK, Simpson D, Schroeder CE, Nöth J, et al. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J Biol Chem. 2013;288:8531–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Yamao M, Naoki H, Kunida K, Aoki K, Matsuda M, Ishii S. Distinct predictive performance of Rac1 and Cdc42 in cell migration. Sci Rep. 2015;5:17527.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zins K, Lucas T, Reichl P, Abraham D, Aharinejad S. A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS ONE. 2013;8:e74924.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Friesland A, Zhao Y, Chen YH, Wang L, Zhou H, Lu Q. Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci USA. 2013;110:1261–6.

    CAS  PubMed  Google Scholar 

  42. 42.

    Nur-E-Kamal MS, Kamal JM, Qureshi MM, Maruta H. The CDC42-specific inhibitor derived from ACK-1 blocks v-Ha-Ras-induced transformation. Oncogene. 1999;18:7787–93.

    CAS  PubMed  Google Scholar 

  43. 43.

    Yang W, Lo CG, Dispenza T, Cerione RA. The Cdc42 target ACK2 directly interacts with clathrin and influences clathrin assembly. J Biol Chem. 2001;276:17468–73.

    CAS  PubMed  Google Scholar 

  44. 44.

    Chen C, Song X, Ma S, Wang X, Xu J, Zhang H, et al. Cdc42 inhibitor ML141 enhances G-CSF-induced hematopoietic stem and progenitor cell mobilization. Int J Hematol. 2015;101:5–12.

    CAS  PubMed  Google Scholar 

  45. 45.

    Du W, Liu W, Mizukawa B, Shang X, Sipple J, Wunderlich M, et al. A non-myeloablative conditioning approach for long-term engraftment of human and mouse hematopoietic stem cells. Leukemia. 2018. [Epub ahead of print] PMID:29959415.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank James F. Johnson, Victoria Summey, and Jeff Bailey for assistance in xenograft experiments. This work was supported in part by the NIH grants R01 CA193350, DK104814, CA204895, and HL085362.

Author contributions

W.L. and W.D. designed and performed the research, analyzed the data, and wrote the paper. X.S., L.W., C.E., M.C.F., M.A.R., A.R., X.Z., K.S., F.G., performed some of the experiments. N.N., J.M., H.G., and Q.P. designed the research. Y.Z. designed the research, analyzed the data, and wrote the paper.

Author information



Corresponding author

Correspondence to Yi Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Du, W., Shang, X. et al. Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization. Leukemia 33, 749–761 (2019).

Download citation

Further reading


Quick links