Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Control of chronic lymphocytic leukemia development by clonally-expanded CD8+ T-cells that undergo functional exhaustion in secondary lymphoid tissues

Abstract

Chronic lymphocytic leukemia (CLL) is associated with substantial alterations in T-cell composition and function. However, the role of T-cells in CLL remains largely controversial. Here, we utilized the Eµ-TCL1 mouse model of CLL as well as blood and lymph node samples of CLL patients to investigate the existence of anti-tumoral immune responses in CLL, and to characterize involved immune cell populations. Thereby, we identified an oligoclonal CD8+ effector T-cell population that expands along with CLL progression and controls disease development. We further show that a higher percentage of CD8+ effector T-cells produces IFNγ, and demonstrate that neutralization of IFNγ results in faster CLL progression in mice. Phenotypical and functional analyses of expanded CD8+ effector T-cells show significant differences in disease-affected tissues in mice, with cells in secondary lymphoid organs harboring hallmarks of activation-induced T-cell exhaustion. Notably, we further describe a respective population of exhausted CD8+ T-cells that specifically accumulate in lymph nodes, but not in peripheral blood of CLL patients. Collectively, these data emphasize the non-redundant role of CD8+ T-cells in suppressing CLL progression and highlight their dysfunction that can be exploited as target of immunotherapy in this malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10:37–50.

    Article  CAS  PubMed  Google Scholar 

  2. Catovsky D, Miliani E, Okos A, Galton DA. Clinical significance of T-cells in chronic lymphocytic leukaemia. Lancet. 1974;2:751–2.

    Article  CAS  PubMed  Google Scholar 

  3. Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015;126:573–81.

    Article  CAS  PubMed  Google Scholar 

  4. Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25:1452–8.

    Article  PubMed  Google Scholar 

  5. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121:1612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood. 2001;97:2777–83.

    Article  CAS  PubMed  Google Scholar 

  7. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ. Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol. 2000;164:2200–6.

    Article  CAS  PubMed  Google Scholar 

  8. Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM, et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep. 2013;4:566–77.

    Article  CAS  PubMed  Google Scholar 

  9. Burgler S, Gimeno A, Parente-Ribes A, Wang D, Os A, Devereux S, et al. Chronic lymphocytic leukemia cells express CD38 in response to Th1 cell-derived IFN-gamma by a T-bet-dependent mechanism. J Immunol. 2015;194:827–35.

    Article  PubMed  CAS  Google Scholar 

  10. Mackus WJ, Frakking FN, Grummels A, Gamadia LE, De Bree GJ, Hamann D, et al. Expansion of CMV-specific CD8+CD45RA+CD27− T cells in B-cell chronic lymphocytic leukemia. Blood. 2003;102:1057–63.

    Article  CAS  PubMed  Google Scholar 

  11. Del Giudice I, Chiaretti S, Tavolaro S, De Propris MS, Maggio R, Mancini F, et al. Spontaneous regression of chronic lymphocytic leukemia: clinical and biologic features of 9 cases. Blood. 2009;114:638–46.

    Article  PubMed  CAS  Google Scholar 

  12. Burkhardt UE, Hainz U, Stevenson K, Goldstein NR, Pasek M, Naito M, et al. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. J Clin Invest. 2013;123:3756–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124:453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118:2427–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA-1-directed T-cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood. 2013;121:2704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98:953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. te Raa GD, Pascutti MF, Garcia-Vallejo JJ, Reinen E, Remmerswaal EB, ten Berge IJ, et al. CMV-specific CD8+T-cell function is not impaired in chronic lymphocytic leukemia. Blood. 2014;123:717–24.

    Article  CAS  Google Scholar 

  18. Pourgheysari B, Bruton R, Parry H, Billingham L, Fegan C, Murray J, et al. The number of cytomegalovirus-specific CD4+T cells is markedly expanded in patients with B-cell chronic lymphocytic leukemia and determines the total CD4+T-cell repertoire. Blood. 2010;116:2968–74.

    Article  CAS  PubMed  Google Scholar 

  19. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA. 2002;99:6955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F, et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci USA. 2009;106:6250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Emicro-TCL1 CLL mouse model. Blood. 2015;126:212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30:570–9.

    Article  CAS  PubMed  Google Scholar 

  24. Knudsen PB, Hanna B, Ohl S, Sellner L, Zenz T, Dohner H, et al. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia. 2014;28:1289–98.

    Article  CAS  PubMed  Google Scholar 

  25. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126:203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68:855–67.

    Article  CAS  PubMed  Google Scholar 

  27. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res. 2014;20:44–55.

    Article  CAS  PubMed  Google Scholar 

  29. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354:1160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    Article  CAS  PubMed  Google Scholar 

  31. Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Brenner MK. Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med. 1993;177:213–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36:265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caligaris-Cappio F. Inflammation, the microenvironment and chronic lymphocytic leukemia. Haematologica. 2011;96:353–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell. 2016;166:1500–11 e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48:202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gordon CL, Miron M, Thome JJ, Matsuoka N, Weiner J, Rak MA, et al. Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. J Exp Med. 2017;214:651–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity. 2013;38:187–97.

    Article  CAS  PubMed  Google Scholar 

  38. Thome JC, Yudanin N, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell. 2014;159:814–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patten PE, Ferrer G, Chen SS, Simone R, Marsilio S, Yan XJ, et al. Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6-deficient process. JCI Insight. 2016;1:4.

    Article  Google Scholar 

  40. Kocher T, Asslaber D, Zaborsky N, Flenady S, Denk U, Reinthaler P, et al. CD4+T cells, but not non-classical monocytes, are dispensable for the development of chronic lymphocytic leukemia in the TCL1-tg murine model. Leukemia. 2016;30:1409–13.

    Article  CAS  PubMed  Google Scholar 

  41. Serrano D, Monteiro J, Allen SL, Kolitz J, Schulman P, Lichtman SM, et al. Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia. J Immunol. 1997;158:1482–9.

    CAS  PubMed  Google Scholar 

  42. Vardi A, Vlachonikola E, Karypidou M, Stalika E, Bikos V, Gemenetzi K, et al. Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: high-throughput immunoprofiling supports selection by shared antigenic elements. Leukemia. 2016;31:1555.

    Article  PubMed  CAS  Google Scholar 

  43. Blanco G, Vardi A, Puiggros A, Gómez-Llonín A, Muro M, Rodríguez-Rivera M, et al. Restricted T cell receptor repertoire in CLL-like monoclonal B cell lymphocytosis and early stage CLL. Oncoimmunology. 2018;7:e1432328.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vardi A, Agathangelidis A, Stalika E, Karypidou M, Siorenta A, Anagnostopoulos A, et al. Antigen selection shapes the T-cell repertoire in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22:167–74.

    Article  CAS  PubMed  Google Scholar 

  45. Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, et al. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). PNAS. 2015;112:E166–E75.

    Article  CAS  PubMed  Google Scholar 

  46. Welsh RM, Che JW, Brehm MA, Selin LK. Heterologous immunity between viruses. Immunol Rev. 2010;235:244–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129:3419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131:1617–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the German José Carreras Foundation (R14/23) to MSe, by the Spanish Ministry of Economy and Competitiveness (SAF 15/31242 R) and the Generalitat de Catalunya (2017 SGR 1009) to DC, by an NCT 3.0 funding program (NCT3.0_2015.13 ImmunOmics, NCT3.0_2015.2 SPL/RP) to MSch and RG, by the DFG (SFB1074 project B1) to StSt, and the BMBF-Network “PRECiSe” (031L0076A) and the ERA-NET TRANSCAN-2 program JTC 2014–project FIRE-CLL to StSt, PL and MSe, PMR was supported by the German Cancer Aid grant number 112069. We would like to thank Daniel Mertens, University of Ulm, for constant support and scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bola S. Hanna or Martina Seiffert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, B.S., Roessner, P.M., Yazdanparast, H. et al. Control of chronic lymphocytic leukemia development by clonally-expanded CD8+ T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia 33, 625–637 (2019). https://doi.org/10.1038/s41375-018-0250-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0250-6

This article is cited by

Search

Quick links