Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple myeloma gammopathies

Targeting Bcl-2 for the treatment of multiple myeloma

Abstract

Despite advances in the treatment of multiple myeloma, the disease still remains incurable for the majority of patients. The overexpression of anti-apoptotic proteins (i.e., Bcl-2, Bcl-XL or Mcl-1) is a hallmark of cancer and favors tumor cell survival and resistance to therapy. The oral drug venetoclax is the first-in-class Bcl-2-specific BH3 mimetic. In myeloma, in vitro sensitivity to venetoclax is mainly observed in plasma cells harboring the t(11;14) translocation, a molecular subgroup associated with high Bcl-2 and low Mcl-1/Bcl-XL expression. In addition with Bcl-2 members expression profile, functional tests as BH3 profiling or in vitro BH3 mimetic drug testing also predict sensitivity to the drug. Phase 1 clinical trials recently confirmed the efficacy of venetoclax monotherapy in heavily pretreated myeloma patients, mostly in patients with t(11;14). In combination with the proteasome inhibitor bortezomib, venetoclax therapy was found to be feasible and allowed promising response rate in relapsed myeloma patients, independent of t(11;14) status. The present review summarizes the current knowledge, “from bench to bedside”, about venetoclax for the treatment of multiple myeloma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Moreau P, Touzeau C. Multiple myeloma: from front-line to relapsed therapies. Am Soc Clin Oncol Educ Book Am Soc Clin Oncol Meet 2015;e504-511.

  3. Touzeau C, Moreau P, Dumontet C. Monoclonal antibody therapy in multiple myeloma. Leukemia. 2017;31:1039–47.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, Goldschmidt H et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study. Leukemia. 2017. https://doi.org/10.1038/leu.2017.138.

  5. Letai AG. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008;8:121–32.

    Article  PubMed  CAS  Google Scholar 

  6. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  PubMed  CAS  Google Scholar 

  7. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    Article  PubMed  CAS  Google Scholar 

  8. Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol J Am Soc Clin Oncol. 2017;35:826–33.

    Article  CAS  Google Scholar 

  9. Derenne S, Monia B, Dean NM, Taylor JK, Rapp M-J, Harousseau J-L, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194–9.

    Article  PubMed  CAS  Google Scholar 

  10. Wuillème-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005;19:1248–52.

    Article  PubMed  CAS  Google Scholar 

  11. Gong J-N, Khong T, Segal D, Yao Y, Riffkin CD, Garnier J-M, et al. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood. 2016;128:1834–44.

    Article  PubMed  CAS  Google Scholar 

  12. Gomez-Bougie P, Amiot M. Apoptotic machinery diversity in multiple myeloma molecular subtypes. Front Immunol. 2013;4:467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bodet L, Ménoret E, Descamps G, Pellat-Deceunynck C, Bataille R, Le Gouill S, et al. BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma. Br J Cancer. 2010;103:1808–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bodet L, Gomez-Bougie P, Touzeau C, Dousset C, Descamps G, Maïga S, et al. ABT-737 is highly effective against molecular subgroups of multiple myeloma. Blood. 2011;118:3901–10.

    Article  PubMed  CAS  Google Scholar 

  15. Touzeau C, Ryan J, Guerriero J, Moreau P, Chonghaile TN, Le Gouill S, et al. BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia. 2016;30:761–4.

    Article  PubMed  CAS  Google Scholar 

  16. Morales AA, Kurtoglu M, Matulis SM, Liu J, Siefker D, Gutman DM, et al. Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood. 2011;118:1329–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. vandeDonk NWCJ, Kamphuis MMJ, van Dijk M, Borst HPE, Bloem AC, Lokhorst HM, Chemosensitization of myeloma plasma cells by an antisense-mediated downregulation of Bcl-2 protein. Leukemia. 2003;17:211–9.

    Article  CAS  Google Scholar 

  18. Badros AZ, Goloubeva O, Rapoport AP, Ratterree B, Gahres N, Meisenberg B, et al. Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol J Am Soc Clin Oncol. 2005;23:4089–99.

    Article  CAS  Google Scholar 

  19. Chanan-Khan AA, Niesvizky R, Hohl RJ, Zimmerman TM, Christiansen NP, Schiller GJ, et al. Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma. 2009;50:559–65.

    Article  PubMed  CAS  Google Scholar 

  20. Paulus A, Chitta K, Akhtar S, Personett D, Miller KC, Thompson KJ, et al. AT-101 downregulates BCL2 and MCL1 and potentiates the cytotoxic effects of lenalidomide and dexamethasone in preclinical models of multiple myeloma and Waldenström macroglobulinaemia. Br J Haematol. 2014;164:352–65.

    Article  PubMed  CAS  Google Scholar 

  21. Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood. 2007;109:5430–8.

    Article  PubMed  CAS  Google Scholar 

  22. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.

    Article  PubMed  CAS  Google Scholar 

  23. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol J Am Soc Clin Oncol. 2012;30:488–96.

    Article  CAS  Google Scholar 

  24. Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D’Rozario J, Assouline S, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378:1107–20.

    Article  PubMed  CAS  Google Scholar 

  25. Chiron D, Dousset C, Brosseau C, Touzeau C, Maïga S, Moreau P, et al. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma. Oncotarget. 2015;6:8750–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19:216–28.

    Article  PubMed  CAS  Google Scholar 

  27. DiNardo CD, Rausch CR, Benton C, Kadia T, Jain N, Pemmaraju N, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018;93:401–7.

    Article  PubMed  CAS  Google Scholar 

  28. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Touzeau C, Dousset C, Le Gouill S, Sampath D, Leverson JD, Souers AJ, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28:210–2.

    Article  PubMed  CAS  Google Scholar 

  30. Punnoose EA, Leverson JD, Peale F, Boghaert ER, Belmont LD, Tan N, et al. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol Cancer Ther. 2016;15:1132–44.

    Article  PubMed  CAS  Google Scholar 

  31. Matulis SM, Gupta VA, Nooka AK, Hollen HV, Kaufman JL, Lonial S, et al. Dexamethasone treatment promotes Bcl-2 dependence in multiple myeloma resulting in sensitivity to venetoclax. Leukemia. 2016;30:1086–93.

    Article  PubMed  CAS  Google Scholar 

  32. Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE, Lonial S, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene. 2016;35:3955–64.

    Article  PubMed  CAS  Google Scholar 

  33. Kumar S, Kaufman JL, Gasparetto C, Mikhael J, Vij R, Pegourie B et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood. 2017. https://doi.org/10.1182/blood-2017-06-788786.

  34. Touzeau C, Le Gouill S, Mahé B, Boudreault JS, Gastinne T, Blin N, et al. Deep and sustained response after venetoclax therapy in a patient with very advanced refractory myeloma with translocation t(11;14). Haematologica. 2017;102:e112–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaufman JL, Gasparetto CJ, Mikhael J, Moreau P, Touzeau C, Vij R, et al. Phase 1 study of venetoclax in combination with dexamethasone as targeted therapy for t(11;14) relapsed/refractory multiple myeloma. Blood. 2017;130:3131.

    Article  CAS  Google Scholar 

  36. Moreau P, Chanan-Khan A, Roberts AW, Agarwal AB, Facon T, Kumar S et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/ refractory MM. Blood. 2017; https://doi.org/10.1182/blood-2017-06-788323.

  37. Anderson MA, Deng J, Seymour JF, Tam C, Kim SY, Fein J, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127:3215–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ryan J, Letai A. BH3 profiling in whole cells by fluorimeter or FACS. Methods San Diego Calif. 2013;61:156–64.

    Article  CAS  Google Scholar 

  39. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell. 2006;10:389–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10:375–88.

    Article  PubMed  CAS  Google Scholar 

  41. Phillips DC, Xiao Y, Lam LT, Litvinovich E, Roberts-Rapp L, Souers AJ, et al. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 2015;5:e368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gomez-Bougie P, Wuillème-Toumi S, Ménoret E, Trichet V, Robillard N, Philippe M, et al. Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 2007;67:5418–24.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou L, Zhang Y, Sampath D, Leverson J, Dai Y, Kmieciak M, et al. Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo. Br J Cancer. 2018;118:388–97.

    Article  PubMed  CAS  Google Scholar 

  44. Dousset C, Maïga S, Gomez-Bougie P, Le Coq J, Touzeau C, Moreau P et al. BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma. Br J Haematol. 2016. https://doi.org/10.1111/bjh.14251.

  45. Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, et al. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer. 2017;17:399.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gupta VA, Matulis SM, Conage-Pough JE, Nooka AK, Kaufman JL, Lonial S, et al. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood. 2017;129:1969–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fresquet V, Rieger M, Carolis C, García-Barchino MJ, Martinez-Climent JA. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood. 2014;123:4111–9.

    Article  PubMed  CAS  Google Scholar 

  48. Herling CD, Abedpour N, Weiss J, Schmitt A, Jachimowicz RD, Merkel O, et al. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia. Nat Commun. 2018;9:727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14:1055–66.

    Article  CAS  Google Scholar 

  50. Dimopoulos MA, Moreau P, Palumbo A, Joshua D, Pour L, Hájek R, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17:27–38.

    Article  PubMed  CAS  Google Scholar 

  51. Dimopoulos MA, Goldschmidt H, Niesvizky R, Joshua D, Chng W-J, Oriol A et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017. https://doi.org/10.1016/S1470-2045(17)30578-8.

  52. Fernández de Larrea C, Kyle RA, Durie BGM, Ludwig H, Usmani S, Vesole DH, et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia. 2013;27:780–91.

    Article  PubMed  CAS  Google Scholar 

  53. Royer B, Minvielle S, Diouf M, Roussel M, Karlin L, Hulin C, et al. Bortezomib, doxorubicin, cyclophosphamide, dexamethasone induction followed by stem cell transplantation for primary plasma cell leukemia: a prospective Phase II Study of the Intergroupe Francophone du Myélome. J Clin Oncol J Am Soc Clin Oncol. 2016;34:2125–32.

    Article  CAS  Google Scholar 

  54. Gonsalves WI, Buadi FK, Kumar SK. Combination therapy incorporating Bcl-2 inhibition with venetoclax for the treatment of refractory primary plasma cell leukemia with t (11;14). Eur J Haematol. 2018;100:215–7.

    Article  PubMed  CAS  Google Scholar 

  55. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.

    Article  PubMed  CAS  Google Scholar 

  56. Hird A, Secrist P, Adam A, Belmonte MA. A potent and selective macrocyclic inhibitor of Mcl-1 for treatment of hematologic cancers. Cancer Res. 2017;77:13.

    Article  Google Scholar 

  57. Hughes PE. The discovery and preclinical characterization of AMG 176: a first-in-class Mcl-1 inhibitor in clinical development for multiple myeloma. Cancer Res. 2017;77:13.

Download references

Author contributions

All authors wrote and critically reviewed the manuscript, and gave final approval. CT, MA and PM are members of Site de Recherche Intégrée sur le Cancer (SIRIC) ILIAD, (INCA-DGOS-Inserm_12558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille Touzeau.

Ethics declarations

Conflict of interest

CT and P Moreau are advisory board member and received honoraria from Abbvie. P Maciag is Abbvie employee and own stock. MA received research funding from Abbvie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touzeau, C., Maciag, P., Amiot, M. et al. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 32, 1899–1907 (2018). https://doi.org/10.1038/s41375-018-0223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0223-9

This article is cited by

Search

Quick links