Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic lymphocytic leukemia

Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia

Abstract

Genomic analyses of chronic lymphocytic leukemia (CLL) identified somatic mutations and associations of clonal diversity with adverse outcomes. Clonal evolution likely has therapeutic implications but its dynamic is less well studied. We studied clonal composition and prognostic value of seven recurrently mutated driver genes using targeted next-generation sequencing in 643 CLL patients and found higher frequencies of mutations in TP53 (35 vs. 12%, p < 0.001) and SF3B1 (20 vs. 11%, p < 0.05) and increased number of (sub)clonal (p < 0.0001) mutations in treated patients. We next performed an in-depth evaluation of clonal evolution on untreated CLL patients (50 “progressors” and 17 matched “non-progressors”) using a 404 gene-sequencing panel and identified novel mutated genes such as AXIN1, SDHA, SUZ12, and FOXO3. Progressors carried more mutations at initial presentation (2.5 vs. 1, p < 0.0001). Mutations in specific genes were associated with increased (SF3B1, ATM, and FBXW7) or decreased progression risk (AXIN1 and MYD88). Mutations affecting specific signaling pathways, such as Notch and MAP kinase pathway were enriched in progressive relative to non-progressive patients. These data extend earlier findings that specific genomic alterations and diversity of subclones are associated with disease progression and persistence of disease in CLL and identify novel recurrently mutated genes and associated outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.

    Article  CAS  Google Scholar 

  2. Ljungstrom V, Cortese D, Young E, Pandzic T, Mansouri L, Plevova K, et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood. 2016;127:1007–16.

    Article  Google Scholar 

  3. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26.

    Article  CAS  Google Scholar 

  4. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127:2122–30.

    Article  CAS  Google Scholar 

  5. Rose-Zerilli MJ, Gibson J, Wang J, Tapper W, Davis Z, Parker H, et al. Longitudinal copy number, whole exome and targeted deep sequencing of ‘good risk’ IGHV-mutated CLL patients with progressive disease. Leukemia. 2016;30:1301–10.

    Article  CAS  Google Scholar 

  6. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44:47–52.

    Article  Google Scholar 

  7. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208:1389–401.

    Article  CAS  Google Scholar 

  8. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120:4191–6.

    Article  CAS  Google Scholar 

  9. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    Article  CAS  Google Scholar 

  10. Burns A, Alsolami R, Becq J, Timbs A, Bruce D, Robbe P, et al. Whole-genome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHV(mut) and IgHV(unmut) subgroups. Leukemia. 2017;3:332–42.

    Google Scholar 

  11. Kasar S, Kim J, Improgo R, Tiao G, Polak P, Haradhvala N, et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat Commun. 2015;6:8866.

    Article  CAS  Google Scholar 

  12. Zhao Z, Goldin L, Liu S, Wu L, Zhou W, Lou H, et al. Evolution of multiple cell clones over a 29-year period of a CLL patient. Nat Commun. 2016;7:13765.

    Article  CAS  Google Scholar 

  13. Nadeu F, Clot G, Delgado J, Martin-Garcia D, Baumann T, Salaverria I, et al. Clinical impact of the subclonal architecture and mutational complexity in chronic lymphocytic leukemia. Leukemia. 2017;32:645–53.

    Article  Google Scholar 

  14. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.

    Article  CAS  Google Scholar 

  15. Landau DA, Sun C, Rosebrock D, Herman SEM, Fein J, Sivina M, et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat Commun. 2017;8:2185.

    Article  Google Scholar 

  16. Jethwa A, Hullein J, Stolz T, Blume C, Sellner L, Jauch A, et al. Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia. Br J Haematol. 2013;163:496–500.

    Article  CAS  Google Scholar 

  17. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–4.

    Article  CAS  Google Scholar 

  18. He J, Abdel-Wahab O, Nahas MK, Wang K, Rampal RK, Intlekofer AM, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 2016;127:3004–14.

    Article  CAS  Google Scholar 

  19. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.

    Article  CAS  Google Scholar 

  20. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood. 2011;118:6904–8.

    Article  CAS  Google Scholar 

  21. Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29:329–36.

    Article  CAS  Google Scholar 

  22. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365:2497–506.

    Article  CAS  Google Scholar 

  23. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  Google Scholar 

  24. Martinez-Trillos A, Pinyol M, Navarro A, Aymerich M, Jares P, Juan M, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood. 2014;123:3790–6.

    Article  CAS  Google Scholar 

  25. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119:329–31.

    Article  CAS  Google Scholar 

  26. Adachi M, Cossman J, Longo D, Croce CM, Tsujimoto Y. Variant translocation of the bcl-2 gene to immunoglobulin lambda light chain gene in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1989;86:2771–4.

    Article  CAS  Google Scholar 

  27. Dyer MJ, Zani VJ, Lu WZ, O’Byrne A, Mould S, Chapman R, et al. BCL2 translocations in leukemias of mature B cells. Blood. 1994;83:3682–8.

    CAS  PubMed  Google Scholar 

  28. Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N, et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 2014;24:212–26.

    Article  CAS  Google Scholar 

  29. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123:3247–54.

    Article  CAS  Google Scholar 

  30. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97:437–41.

    Article  Google Scholar 

  31. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123:2139–47.

    Article  CAS  Google Scholar 

  32. Ojha J, Ayres J, Secreto C, Tschumper R, Rabe K, Van Dyke D, et al. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood. 2015;125:492–8.

    Article  CAS  Google Scholar 

  33. Wang L, Shalek AK, Lawrence M, Ding R, Gaublomme JT, Pochet N, et al. Somatic mutation as a mechanism of Wnt/beta-catenin pathway activation in CLL. Blood. 2014;124:1089–98.

    Article  CAS  Google Scholar 

  34. Messina M, Del Giudice I, Khiabanian H, Rossi D, Chiaretti S, Rasi S, et al. Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood. 2014;123:2378–88.

    Article  CAS  Google Scholar 

  35. Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017;548:234–8.

    Article  CAS  Google Scholar 

  36. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.

    Article  CAS  Google Scholar 

  37. Dahlman KB, Xia J, Hutchinson K, Ng C, Hucks D, Jia P, et al. BRAF(L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012;2:791–7.

    Article  CAS  Google Scholar 

  38. Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526:583–6.

    Article  CAS  Google Scholar 

  39. Fama R, Bomben R, Rasi S, Dal Bo M, Ciardullo C, Monti S, et al. Ibrutinib-naive chronic lymphocytic leukemia lacks Bruton tyrosine kinase mutations associated with treatment resistance. Blood. 2014;124:3831–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ACL is supported by the van der Laan foundation. JT is supported by an American Society of Hematology (ASH) Research Training Award for Fellows, an ASCO Young Investigator Award, and the ASH and Harold Amos Medical Faculty Development Program of the Robert Wood Johnson Foundation. JG was supported by the Vogelstein Fund at MSKCC. OAW is supported by NIH/NCI R01 (1R01HL128239-01 and 1R01 CA201247-01) and support from the Cycle for Survival. This work was also supported by the Peter Solomon Fund at MSKCC. TZ was supported by a Mildred Scheel Professorship, the “Monique Dornonville de la Cour Stiftung” and the Transcan project. Many thanks go to the participating patients and we would like to acknowledge all participating institutions in the HOVON68 CLL trial, the data managers and statisticians of the HOVON data center, as well as the HOVON68 CLL study funding sources, the participating German centers and MSKCC.

Author contributions

ACL, JT, BW, JRG, MN, JH, MG, OAW, TZ, and APK were responsible for conception and design of the study. ACL, BW, JT, JRG, RLL, VM, and TM were involved in analysis and interpretation of data. MN, JH, MH, DR, WGA, TW, JH, FB, KH, JD, NL, MGF, SD, RC, JD, CHG, MHJO, MLH, and AZ, TZ, OAW, and APK were involved in acquisition of patient materials. ACL, BW, JRG, and MG perfomed statistical analyses. ACL, BW, and JRG made the figures. ACL, JT, TZ, OAW, and APK wrote the first draft; and all authors were involved in revising the manuscript and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omar Abdel-Wahab or Arnon P. Kater.

Ethics declarations

Conflict of interest

MN, JH, VM, and TM are employees of Foundation Medicine. RLL and OAW are consultants for Foundation Medicine. The remaining authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leeksma, A.C., Taylor, J., Wu, B. et al. Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia 33, 390–402 (2019). https://doi.org/10.1038/s41375-018-0215-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0215-9

This article is cited by

Search

Quick links