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Abstract
Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of
myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and
prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing
clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a “real-
world” context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for
MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe
an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate
the requirement for an “integrated” diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing
platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be
performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-
related clonal hematopoiesis.

Introduction

Myelodysplastic syndromes (MDS) are a diverse group
of clonal hematopoietic stem cell neoplasms character-
ized by ineffective hematopoiesis, peripheral blood
cytopenias, and an inherent risk of progression to acute
myeloid leukemia (AML) [1]. The incidence of MDS has
been estimated at ~4.35 per 100 000 in the United States
(age-adjusted incidence) [2] and 4.0 per 100 000 in
Europe [3]. MDS is more common in males, with the
exception of the MDS with isolated deletion 5q (del(5q)
syndrome), which has a female predilection [4, 5].

However, the true incidence of MDS may actually be
higher due to delayed presentation, inaccurate reporting,
misinterpretation of subtle bone marrow (BM) morpho-
logic findings, or misdiagnosis. MDS is predominantly a
disease of the elderly, with a median age of onset in the
seventh decade of life, although it may present much
earlier [5]. Importantly, MDS may arise sporadically or
be associated with an underlying germline predisposition
syndrome, which may present at any age during child-
hood or adulthood [6]. In some cases, a precise diagnosis
may be challenging, even in experienced centers. Con-
ventionally, the prognostic scores utilized most fre-
quently in daily clinical practice for MDS are the
International Prognostic Scoring System (IPSS) and the
revised IPSS (IPSS-R) [7, 8]. The IPSS, first described
more than 20 years ago, encompasses the number of
cytopenias, 3 cytogenetic subsets, and BM blast per-
centage. The IPSS-R has been refined to include the
depth of cytopenias, 5 cytogenetic subsets, and further
subdivides the BM blast percentage. Lower-risk (LR)-
MDS is most commonly defined as those cases with Low-
risk or Intermediate-1-risk MDS according to the IPSS
[7]. It is extremely important to distinguish LR-MDS
from other nonmalignant and non-clonal causes of
cytopenias, such as vitamin deficiencies, side effects
from drugs, autoimmune disorders, systemic infections
such as human immunodeficiency virus (HIV) or
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inflammatory disorders, as well as from other myeloid
neoplasms [1, 9].

Overview of disease pathogenesis

Over the past decade, major advances have been made in
our understanding of how these diverse disorders arise.
Cumulative cytogenetic, genomic, and immunologic data
provide a fascinating insight into the varied pathogenetic
mechanisms underlying disease development despite simi-
lar clinical and hematologic phenotypes. Advances in high-
throughput DNA sequencing have led to the identification
of multiple recurrent somatic mutations involved in disease
initiation and progression. These include diverse genes
involved in RNA splicing, DNA methylation, histone
modification, signal transduction, transcription, and the
cohesin complex [10]. The incidence of these mutations,
prognostic significance, and associated disease character-
istics are described in Table 1 [11–30]. Furthermore,
excessive DNA damage has been frequently reported in
patients with MDS, and both intrinsic and extrinsic geno-
toxins have been implicated [31]. Defective DNA repair
pathways have also been implicated in MDS pathogenesis
although the evidence is less robust than that in AML [32].

Despite the established role of chronic inflammation in
the pathogenesis of many malignancies, a potential role in
MDS remained less clear until recently. One of the first
reports recognizing an association between immunologic
abnormalities and MDS was published by Mufti et al. [33],
highlighting the higher incidence of abnormal serum
immunoglobulins and autoantibodies in patients with MDS.
Results from a collaborative study demonstrated that the
presence of an autoimmune disorder was associated with an
improvement in overall survival in MDS [34], most likely
due to an initially “protective” adaptive immune response
[35]. Further work has demonstrated modulation of both the
adaptive and innate immune systems linked to disease
initiation and progression [35]. An increase in the number
of interleukin 17-producing T cells (Th17) in LR-MDS,
whereby the ratio of Th17 cells to regulatory T cells (Tregs)
was significantly higher in LR-MDS compared with higher-
risk (HR) MDS, correlated with the presence of apoptosis
[36]. Moreover, an immunosuppressive environment with
increased Tregs in LR-MDS carries adverse prognostic
significance [37]. The innate immune system also plays a
key role in MDS pathogenesis via the upregulation of
inflammatory cytokines through nuclear factor (NF)-κB
activation and/or activation of the redox-sensitive NLRP3
inflammasome and β-catenin pathways leading to clonal
propagation [38]. Lastly, it is becoming increasingly evident
that the microenvironment plays a key role in disease pro-
pagation. Mesenchymal niche-induced genotoxic stress in

hematopoietic stem/progenitor cells (HSPC) has been found
to be predictive of leukemic evolution and progression-free
survival in MDS [39]. Further refinements of the diagnostic
and prognostic criteria for MDS will likely include these
immunologic findings; however, it is important to stress that
these immunologic findings need to be considered within
both the clinical and hematologic context. In this review
article, we describe an integrated approach to the diagnosis
of patients with LR-MDS, taking into account the increas-
ing “-omics” data concerning MDS pathogenesis and
prognosis (Fig. 1).

An up-to-date approach to the diagnosis of
lower-risk MDS

History and physical examination

A detailed, focused, and systemic enquiry should be com-
pleted in the workup of any potential case of MDS to rule-
out other reasons for cytopenia. This workup should include
a detailed extended family history, occupational history, and
comprehensive review of concomitant medications. Any
history of other malignancies that may suggest an under-
lying germline predisposition syndrome, as well as any
history of exposure to cytotoxic chemotherapy or radio-
therapy, should be noted. The chronic nature of the cyto-
penias should be carefully evaluated and historical blood
counts assessed where possible. Moreover, a thorough
physical examination should be performed with particular
reference to organomegaly, lymphadenopathy, stigmata of
autoimmune disorders, and features suggestive of a con-
stitutional BM failure disorder.

Morphologic examination of blood and BM

The diagnosis of MDS historically relied largely on mor-
phologic findings of BM and blood [40]. In theory, mor-
phologic examination is a technically simple and
inexpensive method [41] and can be performed using well-
prepared peripheral blood smears, BM aspirates, and BM
trephine biopsies. However, as patients may present with
hypocellular marrows or disease-related fibrosis, accurate
morphologic assessment may be difficult. Moreover, dif-
ferentiation between entities such as aplastic anemia (AA)
and hypoplastic MDS may prove challenging due to the
considerable overlap in morphologic findings (Fig. 1). In
general, at least 200 cells in a blood film, 500 cells in a BM
aspirate, and a minimum of 100 erythroblasts and 30
megakaryocytes should be evaluated where possible [42].
An accurate diagnosis in patients in the early stages of
disease may be difficult. The 2016 revised World Health
Organization (WHO) criteria for MDS rely heavily upon
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Table 1 Common mutations in MDS

Genetic mutation Incidence (%) Characteristics and prognostic significance Reference

RNA splicing

SF3B1 25–30 •Mutations cluster in exons 12 to 15; mutation
hotspots include K700, E622, R625, H662, K666,
and I704

Malcovati et al. [9]; Haferlach et al. [10];
Papaemmanuil et al. [11]; Makishima et al.
[12]

•Strongly associated with the presence of RS

•More common in patients with LR-MDS

•Presence of SF3B1 and RS has a favorable
prognosis including improved OS, leukemia-free-
survival, and EFS

SRSF2 10–20 •Mutation hotspot: P95 Thol et al. [13]; Yoshida et al. [14]

•Negative prognostic marker for OS in MDS Makishima et al. [12]

U2AF1 5–10 •Mutations cluster in exons 2 and 6; mutation
hotspots include S34, Q157 (U2AF35 dimer)

Yoshida et al. [14]; Graubert et al. [15];
Makishima et al. [12]

•Increased risk of progression to AML

ZRSR2 <10 •Not defined Cazzola et al. [16]

PRPF8 ~10 •Not defined Sperling et al. [17]; Bejar et al. [18];
Makishima et al. [12]

LUC7L2 ~ 1 •Not defined Sperling et al. [17]; Haferlach et al. [10];
Makishima et al. [12]

DNA methylation

TET2 20–30 •Low TET2 expression associated with worse
prognosis

Santamaria et al. [19]; Bejar et al. [20]

•In vivo, TET2 mutations sensitize cells to AZA

DNMT3A 10 •Mutation hotspots: R882, P904 Walter et al. [21]; Haferlach et al. [10]

•Associated with poorer OS

•More common in patients with LR-MDS

IDH1/IDH2 ~5 •Mutation hotspots: R132 (IDH1), R140, R172
(IDH2)

Cazzola et al. [16]; DiNardo et al. [22]

•Associated with multilineage dysplasia and excess
blasts

Chromatin modification

ASXL1 15–20 •Mutation hotspots: G646, E635 Bejar et al. [23]; Chen et al. [24]

•Associated with decreased OS

EZH2 ~5 •Associated with multilineage dysplasia and excess
blasts

Cazzola et al. [16]

•Associated with unfavorable clinical outcome in all
myeloid neoplasms

Transcription

RUNX1 ~10 •Associated with multilineage dysplasia and excess
blasts

Cazzola et al. [16]

•Associated with unfavorable clinical outcome

BCOR <5 •Associated with multilineage dysplasia and excess
blasts

Cazzola et al. [16]

•Associated with unfavorable clinical outcome

CUX1 <5 •Associated with poor prognosis Sperling et al. [17]; Nazha et al. [25]

ETV6 <5 •Associated with poor OS Sperling et al. [17]; Bejar et al. [23]

NPM1 <5 •Not defined Sperling et al. [17]; Bejar et al. [23]

DNA repair

TP53 10 •More frequent in HR-MDS Harada et al. [26]; Bejar et al. [23]

•Independently associated with decreased OS Bejar et al. [27]; Mallo et al. [28]
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assessment of the degree of dysplasia and blast percentages
rather than specific cytopenias. Suggested values for cate-
gorization of cytopenias in MDS remain hemoglobin <10 g/
dl, platelet count <100 × 109/l, and absolute neutrophil
count <1.8 × 109/l. When measuring neutrophil count, the
ethnic origin of the patient and individual laboratory refer-
ence ranges should be considered, as some patient popula-
tions may have a lower minimal normal neutrophil count
(<1.5 × 109/l). Importantly, MDS may initially present with
anemia or thrombocytopenia above these arbitrary thresh-
olds [43]. Although the threshold for defining dysplasia is
10% dysplastic cells in any 1 lineage, dysplasia in 1 cell
lineage above 10% may occur in some healthy individuals
and in other causes of cytopenia. The number of classical
signs of dysplasia may also be low, depending on the case.
Germing et al. [44] reported a median of six different
dysplastic features in individual patients, highlighting the
importance of testing both the peripheral blood and BM for
signs of dysplasia. Although there is also inherent sub-
jectivity in the classification of dysplasia, even among

experienced hematopathologists [43], studies have shown
moderate to substantial concordance among experts in
assessing dysplasia in LR-MDS [45]. To estimate blast
percentage, it is now recommended that all nucleated BM
cells should be counted as the denominator, rather than just
non-erythroid cells; [46, 47] this applies to all myeloid
neoplasms [43]. Prussian blue staining of the BM is
essential to determine if ring sideroblasts (RS; cells con-
taining at least five siderotic granules surrounding the
nucleus) are evident and how many are present. Most
patients with RS are stratified into LR-MDS categories [48]
(Table 2), and the revised WHO classification recommends
a diagnosis of MDS-RS if an SF3B1 mutation (discussed in
detail below) is present when RS comprise as few as 5% of
the nucleated erythroid population. BM trephine biopsy can
provide a more accurate assessment of the BM topography,
cellularity, and presence or absence of fibrosis [49]. We
recommend a trephine biopsy be performed at diagnosis and
for follow-up assessments. Of note, the new 2016 WHO
proposals for MDS classification were recently validated—

Table 1 (continued)

Genetic mutation Incidence (%) Characteristics and prognostic significance Reference

Cohesins

STAG2 <10 •Associated with multilineage dysplasia and excess
blasts

Cazzola et al. [16]

•Mutated in ~ 10% of patients with AML

•Associated with unfavorable clinical outcome

CTCF <5 •Not defined Sperling et al. [17]

Cell signaling

CBL <5 •Associated with poor OS Cazzola et al. [16]; Bejar et al. [23]

NRAS/KRAS <5 •Prognostic significance not defined in MDS Cazzola et al. [16]

NF1 <5 •Prognostic significance not defined in MDS Cazzola et al. [16]; Haferlach et al. [10]

JAK2 2–10 •Associated with thrombocytosis and MPN Sperling et al. [17]; Bejar et al. [23];
Haferlach et al. [10]•More common in LR-MDS

MPL 2–10 •More common in LR-MDS Sperling et al. [17]; Haferlach et al. [10]

•Associated with MPN

DNA replication

SETBP1 <5 •Found in 25% of patients with aCML and in subsets
of patients with advanced MDS or CMML

Cazzola et al. [16]

•Associated with poor OS and high risk of AML
transformation

Other

CSF3R <1 •Strictly associated with CNL, found in a subset of
patients with aCML

Cazzola et al. [16]

•Mutation type may predict response to specific
inhibitors

BRCC3 2–10 •Not defined Sperling et al. [17]; Haferlach et al. [10]

aCML atypical chronic myeloid leukemia, AML acute myeloid leukemia, AZA azacitidine, CMML chronic myelomonocytic leukemia, CNL chronic
neutrophilic leukemia, EFS event-free survival, HR-MDS higher-risk MDS, LR-MDS lower-risk MDS, MDS myelodysplastic syndromes, MPN
myeloproliferative neoplasm, OS overall survival, RS ring sideroblasts
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and shown to be both pragmatic and feasible—in a large
independent cohort [50].

Role of flow cytometry in MDS diagnosis: an
overview

Over the past decade, flow cytometric advances have gained
increasing importance in aiding the diagnosis of MDS.
Multiparameter flow cytometry (MFC) may be used to
detect the aberrant expression of differentiation-associated

antigens in cells, as well as abnormal phenotypic patterns in
maturing hematopoietic cells. However, as the underlying
complexity and heterogeneity of the disease makes robust
harmonization and reproducibility of testing difficult,
immunophenotypic findings should always be considered in
the context of other diagnostic results as part of an inte-
grated diagnostic report (Fig. 1).

Attempts have been made to standardize immunopheno-
typing protocols, antibody selection, and interpretation of
resultant diagnostic information. The European LeukemiaNet

Table 2 WHO 2016 MDS and
MDS/MPN disease subtypes

MDS MDS/MPN

MDS with single lineage dysplasia Chronic myelomonocytic leukemia (CMML)

MDS with ring sideroblasts (MDS-RS) Atypical chronic myeloid leukemia (aCML), BCR-ABL 1−

MDS-RS and single lineage dysplasia Juvenile myelomonocytic leukemia (JMML)

MDS-RS and multilineage dysplasia MDS/MPN with ring sideroblasts and thrombocytosis
(MDS/MPN-RS-T)

MDS with multilineage dysplasia MDS/MPN, unclassifiable

MDS with excess blasts

MDS with isolated del(5q)

MDS, unclassifiable

Provisional entity: refractory cytopenia of
childhood

MDS myelodysplastic syndromes, MDS-RS myelodysplastic syndromes-ring sideroblasts, MPN myelopro-
liferative neoplasm, WHO World Health Organization

Fig. 1 Differential diagnosis of ICUS, CCUS, CHIP, and MDS is important to informing prognosis and to guide treatment decisions (a), while
accurate diagnosis of hypoMDS and AA can be challenging due to overlapping symptoms (b). The diagnosis of MDS has traditionally been
achieved using morphology, measurement of blast count, and cytogenetic analyses. Newer diagnostic techniques, such as flow cytometry and
mutational profiling, are becoming more widely used. These may facilitate diagnosis of hematopoietic disorders; however, the challenge will be to
integrate these methods into a single diagnostic workflow that can be used for the differential diagnosis of each disease (c). AA aplastic anemia,
aCGH array-based comparative genomic hybridization, CCUS clonal cytopenia of undetermined significance, CHIP clonal hematopoiesis of
indeterminate potential, hMDS hypoplastic MDS, ICUS idiopathic cytopenia of undetermined significance, MDS myelodysplastic syndromes,
PNH paroxysmal nocturnal hemoglobinuria, SNP single-nucleotide polymorphism, WHO World Health Organization
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(ELN) collaborative group proposed minimal requirements
for the standardization of flow cytometry in MDS, recom-
mending the use of multicolor MFC to detect 4 key repro-
ducible parameters: (i) percentage of CD34+ myeloid
progenitors, (ii) frequency of B-cell progenitors within the
CD34+ cell population, (iii) myeloid progenitor cell CD45
expression, and (iv) granulocyte side scatter value [51–54].
In a large “learning and validation” cohort study (797
patients; 417 with LR-MDS and 380 controls with non-clonal
cytopenia) designed to develop and validate a flow cyto-
metric score for MDS diagnosis, patients with MDS fre-
quently displayed increased myeloid progenitor-related
cluster size, decreased B-cell progenitor-related cluster size,
reduced granulocyte side scatter, and aberrant CD45
expression. Overall, the diagnostic score had a sensitivity of
70% to correctly diagnose MDS. Cremers et al. [55] reported
on the specificity of MFC in excluding MDS in 379 cyto-
penic patients with indeterminate cytomorphology or cyto-
genetic findings—the presence of normal MFC findings
predicted a low probability of developing MDS within
1 year.

Prognostically, a higher flow cytometry score has been
associated with multilineage dysplasia, severe cytopenias,
red blood cell transfusion dependence, and poor-risk cyto-
genetics, leading to a higher revised International Prog-
nostic Scoring System (IPSS-R) classification, and an
increased risk of leukemic evolution [56]. More recently,
Alhan et al. [57] analyzed the flow cytometric character-
istics of BM aspirate samples from 109 individuals with
MDS to derive an MDS Flow Cytometry Score (MFS); this
was validated in a further 103 patients. This MFS incor-
porates three parameters; degree of sideward light scatter of
myeloid progenitor cells, CD117 expression on myeloid
progenitor cells, and CD13 expression on monocytes. A
high MFS score was associated with significantly poorer
outcomes versus patients with intermediate MFS scores. Of
particular note, the MFS further refined prognostication
within the IPSS-R low-risk group, whereby those with high
MFS tended to have worse overall survival. A multinational
collaborative group has suggested minimal diagnostic cri-
teria for both MDS and pre-MDS states and importantly has
included a focus on suggested FC panels [58].

While the above studies focused on the myeloid com-
partment, a recent study focused on the erythroid compart-
ment with the aim of delineating dyserythropoiesis associated
with MDS from non-clonal cytopenias, something that can be
very difficult for even experienced morphologists. An ery-
throid flow cytometry marker incorporating CD36 and CD71
expression (expressed as a co-efficient of variation), com-
bined with CD71 fluorescence intensity and the percentage of
CD117+ erythroid progenitors formed a marker set with high
specificity (92%; 95% confidence interval 86–97%) for dis-
criminating between true MDS and other non-clonal

cytopenias [59]. This approach was validated in a prospective
clinical study of 106 patients with MDS [60].

Despite advances, several issues regarding the utility of
FC remain: (1) the variable degree of sensitivity; (2) het-
erogeneous immunophenotypic findings dependent on
antibody combination and gating strategies; (3) the lack of
uniform standardization; and (4) reproducibility across
platforms and users [61]. One area of interest should be the
immunophenotypic signature of conditions, which may
mimic LR-MDS, such as autoimmune and inflammatory-
driven cytopenias. Where possible, laboratories should
follow the guidance of the ELN working group for stan-
dardization of flow cytometry in MDS. Flow cytometry
findings should be one facet of the integrated report, which
should also include peripheral blood counts, a description of
the BM aspirate and trephine morphology with any relevant
immunohistochemistry, and the complete conventional
karyotype and fluorescence in situ hybridization (FISH)
data, as well as molecular data where available (Fig. 1).

Paroxysmal nocturnal hemoglobinuria (PNH)
screening

The presence of paroxysmal nocturnal hemoglobinuria
(PNH) in patients with MDS may have important implica-
tions for prognosis and treatment. Patients with MDS and
increased PNH-type cells may have more severe thrombo-
cytopenia but less pronounced blood cell-morphologic
abnormality, lower rates of karyotypic abnormalities, and
lower rates of progression to acute leukemia versus patients
with MDS without increased PNH-type cells [62]. PNH
clones can occur in both MDS and AA and can readily be
detected by standard flow cytometric techniques showing
lack of glycophosphatidylinositol-anchored proteins in the
red cell, monocyte, and granulocyte compartments [63].
PNH clones have been reported in between 5.5% and 8% of
patients with MDS [64, 65] and in 26.3% of patients with
AA [64]. To detect PNH clones, samples should be ana-
lyzed within 24–48 h to ensure sensitivity at detecting PNH
clones. Even when detected, the clone size can vary sub-
stantially and may often be clinically insignificant. If pre-
sent at >1%, follow-up testing should generally be
performed every 6 months [66] to determine whether clonal
expansion has occurred. Patients with PNH and either AA
or MDS may benefit from treatment with eculizumab, an
anticomplement C5 monoclonal antibody that inhibits
complement-mediated hemolysis of red blood cells [67].

Cytogenetic testing

Chromosome abnormalities are detected in approximately
50% of patients with newly diagnosed MDS and more than
80% of those with therapy-related MDS based on
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conventional G-banding karyotypic analysis, or FISH [68,
69]. Importantly, FISH analysis can be applied to both
metaphase cell preparations and interphase cell nuclei. FISH
may aid diagnosis in patients with poor-quality metaphases
or submicroscopic alterations. As FISH has only limited
ability to detect additional abnormalities that are undetect-
able by metaphase cytogenetics [70], it should primarily be
used when adequate metaphases are unavailable for con-
ventional cytogenetic analysis. FISH analysis of peripheral
blood CD34+ cells may also be used when conventional
chromosome banding analysis is not possible [71]. A sug-
gested FISH panel for diagnostic laboratory use in MDS
could include the following probes: (i) EGR1/D5S630/
D5S21 probe set, to detect −5 and del(5q); (ii) D7S486 or
alternative probe set, to detect −7 and del(7q); (iii) CEP 8
or alternative, to detect trisomy 8; (iv) D20S108/20qter
probe set, to detect −20 and del(20q); (v) TP53 locus-
specific probe, to detect del(17p13.1); (vi) RPN1/MECOM
to detect t(3;3) and inv(3); (vii) MLL (KMT2A) to detect
11q23.1−q23.3 rearrangement; and (viii) D13S319/LAMP1
to detect del(13q).

As discussed, karyotype risk factors feature heavily in
both the IPSS and IPSS-R prognostic stratification (Table 3)
[7, 8] and can aid prediction of response to therapeutic
intervention. For example, the presence of del(13q) is
associated with a favorable response to immunosuppressive
therapy [72]. In a comprehensive cytogenetic analysis on
2072 MDS patients, clonal abnormalities were found in
1084 (52%) [68]. A total of 684 different cytogenetic
categories were identified, reflecting the marked karyotypic
heterogeneity associated with MDS. The most frequent
cytogenetic abnormalities in MDS are del(5q), monosomy
7/del(7q), trisomy 8, loss of Y, and complex karyotypes
(conventionally defined as ≥3 chromosomal aberrations,
including at least 1 structural aberration) [73] (Table 4)
[8, 74]. In LR-MDS, the frequent findings are a normal
karyotype, isolated del(5q), del(20q), and –Y [8, 74].

Array-based comparative genomic hybridization (aCGH)
facilitates identification of small chromosomal abnormal-
ities that may remain undetected with traditional cytoge-
netics [75]. These abnormalities may include deletion of the
region of chromosome 4q24 containing the TET2 gene,
small deletions on chromosome 5q31, and deletions of
7q22.1 and 21q22.12 [76]. A small study reported on the
utility of high-resolution whole genome aCGH analysis of
CD34+ progenitor cells isolated from the marrow of 44 LR-
MDS patients, 25 of whom had no karyotypic aberration by
conventional karyotyping. aCGH identified cryptic DNA
alterations that were undetectable by conventional kar-
yotyping and revealed copy number changes in 36 of 44
patients. Moreover, maintenance of genomic integrity
(arbitrarily defined as a chromosomal disruption of <3 MB)
was associated with lower risk of leukemic transformation

and improved survival [77]. Similarly, single-nucleotide
polymorphism arrays (SNP-A) carry significant technical
advantages and can be used for high-resolution genotyping
in MDS to identify additional aberrations, including mea-
surement of gene copy number (hybridization signal
intensity) and areas of loss of heterozygosity, which cannot
be detected with conventional techniques [78]. In a study of
SNP-A genotyping performed on 119 LR-MDS patients,
the group from King’s College, London demonstrated the
presence of uniparental disomy in 46%, deletions in 10%,
and amplifications in 8% of patients [78]. SNP-A geno-
typing provides superior levels of resolution and is able to
evaluate nondividing cells and detect acquired copy-neutral
loss of heterozygosity [79]. Potential platforms include
the Affymetrix (Santa Clara, CA, USA) SNP platform 6.0
version (with 1.8 million probes), and the Cytoscan
HD platform (with 2.695 million probes). However,
SNP-A does not detect balanced translocations or small
clones.

Importantly for both diagnosis and follow-up, there is a
high concordance between cytogenetic and genomic aber-
rations detectable in the BM and in the peripheral blood of
MDS patients [80]. This study evaluated BM-derived
“genetic markers” in peripheral blood and serum samples
using SNP-A karyotyping, 454 parallel sequencing (454-
PS), and Sanger sequencing of 22 genes frequently mutated
in MDS: all exons of DNMT3A, RUNX1, CEBPα, TP53,
EZH2, and ZRSR2 and mutation “hotspots” for NPM1,
FLT3, ASXL1, IDH1, IDH2, MPL, JAK2, BRAF, cCBL,
NRAS, KRAS, C-KIT, SF3B1, SRSF2, and U2AF35. TET2
was analyzed by Sanger sequencing. This study success-
fully demonstrated an excellent concordance for both SNP-
A and mutation analyses between peripheral blood (not
serum) and BM, albeit with a lower clonal burden in the
peripheral blood. In practical terms, this means that
sequential cytogenetic monitoring can be performed on the
peripheral blood rather than subjecting patients, who are
often elderly, to repeated marrow biopsies [80].

Genomic profiling: mutational landscape

The increasing availability of rapid sequencing has revo-
lutionized the diagnostic mutational profiling of suspected
MDS patients (Table 1) [11–30]. Recurrent genetic muta-
tions occur in diverse, pivotal cellular pathways. These
include tyrosine kinases (FLT3, JAK2, MPL) and their
downstream signaling pathways (RAS, CBL), transcription
factors (RUNX1, NPM1, ETV6, GATA2), tumor suppressors
(TP53, WT1), epigenetic modifiers (TET2, ASXL1, EZH2,
DNMT3A, IDH), pre-mRNA splicing machinery (SF3B1,
SRSF2, U2AF1, ZRSR2), and cohesion complex proteins
(STAG2, RAD21, SMC3, SMC1A). Akin to cytogenetic
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profiling, the mutational landscape of MDS demonstrates
great heterogeneity, although SF3B1 and TET2 remain the
most commonly detected disease-associated mutations
overall with incidences of 20–25% [12]. Furthermore, the

DNA methylation-associated gene DNMT3A and the chro-
matin modification gene ASXL1 are mutated in more than
10% of MDS patients [81]. Della Porta et al. [82] reported
on an association between the presence of severe granulo-
cytic dysplasia and mutations in ASXL1, RUNX1, TP53, and
SRSF2. The mean number of mutations is lower in LR-
MDS compared with HR-MDS and, with the exception of
SF3B1, DNMT3A, JAK2, and MPL, the majority of com-
mon mutations are more prevalent in high-risk subtypes
[12]. Moreover, in an analysis of 288 patients with LR-
MDS, 71% of the cohort had detectable mutations, most
commonly involving TET2 (23% of samples), SF3B1
(22%), U2AF1 (16%), ASXL1 (15%), SRSF2 (15%), and
DNMT3A (13%) [83].

Mutational profiling can also confer significant prog-
nostic information and help predict response to therapy
[20, 30]. As a result, mutational data are increasingly inte-
grated into prognostic scoring systems and therapeutic
treatment pathways. Mutations of ASXL1 are associated
with poorer overall survival [25], while mutations of the
tumor suppressor gene TP53 occur more frequently in
patients with HR-MDS than LR-MDS [28] and are an
independent predictor of decreased overall survival [25, 29].
Bejar et al. demonstrated that the presence of high abun-
dance TET2 mutations were associated with an increased
response rate to HMA therapy in a large MDS cohort,
including cases of LR-MDS, particularly in the absence of
ASXL1 [22]. Moreover, pre-allogeneic stem cell
transplantation-targeted genomic profiling can aid predic-
tion of transplantation outcomes in MDS [84].

In contrast to the majority of recurrently mutated genes
in MDS that occur in HR phenotypes, SF3B1 mutation is

Table 4 Incidence and prognostic significance of key cytogenetic
anomalies in MDSa

Cytogenetic
anomaly

Incidence
among 1 202
MDS patients,
% (Haase et al.)
[68]

Median
OS, months
(Haase
et al.) [68]

Prognostic
significance
according to IPSS-
R (Greenberg
et al.) [65]

−Y 2.8 39.4 Very good

del(11q) 0.9 26.1

del(5q) 11.0 77.2 Good

del(12p) 0.6 NR

del(20q) 2.0 71.0

del(7q) 0.9 19.0 Intermediate

+8 5.3 23.0

+19 0.4 19.8

t(17q) 0.5 32.1

−7 3.5 14.0 Poor

del(7q) 0.9 14.0

inv(3q)/t(3;3) 1.3 19.9

Complex (3
abnormalities)

2.7 17.0

Complex (>3
abnormalities)

11.1 8.7 Very poor

aIncludes isolated, +1, and complex karyotypes, unless otherwise
specified

IPSS-R revised International Prognostic Scoring System, MDS
myelodysplastic syndromes, NR not reached, OS overall survival

Table 3 IPSS and IPSS-R prognostic scoring systems for MDS: classification, prevalence, and outcomes

Risk
classification
system

Prognostic
variables

Karyotype/cytogenetic classification
criteria

Prognostic
risk group

Proportion of
MDS patients,
%

Median
OS,
years

Median time to 25%
AML transformation,
years

IPSS
(Greenberg
et al.) [64]

1. Cytopenias •Good: normal, −Y, del(5q), del(20q) Low 33 5.7 9.4

2. Karyotype •Poor: complex (≥3 abnormalities),
chromosome 7 anomaly

Int-1 38 3.5 3.3

3. BM blast
percentage

•Int: other abnormalities Int-2 22 1.2 1.1

High 7 0.4 0.2

IPSS-R
(Greenberg
et al.) [65]

1. Cytogenetics •Very good: −Y, del(11q) Very low 19 8.8 NR

2. BM blast
percentage

•Good: normal, del(5q), del(12p), del
(20q), double incl. del(5q)

Low 38 5.3 10.8

3. Hemoglobin •Int: del(7q), +8, +19, i(17q), other single
or double independent clone

Int 20 3.0 3.2

4. Platelets •Poor: −7, inv(3)/t(3q)/del(3q), double
incl. −7/del(7q), complex (3
abnormalities)

High 13 1.6 1.4

5. ANC •Very poor: complex (>3 abnormalities) Very high 10 0.8 0.7

AML acute myeloid leukemia, ANC absolute neutrophil count, BM bone marrow, Int intermediate, IPSS(-R) (revised) International Prognostic
Scoring System, MDS myelodysplastic syndromes, NR not reached, OS overall survival.
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more common in patients with LR-MDS and confers a
favorable prognosis [11, 12, 29, 85]. Mutations of SF3B1
are strongly associated with favorable disease character-
istics including the presence of RS [9–13, 42, 86] and
normal cytogenetics [85]. Mian et al. [85] elegantly
demonstrated that SF3B1 mutations in patients with MDS
with RS arise early in rare hematopoietic stem cells; these
may indeed be the initiating event and may propagate to
myeloid progeny [85]. SF3B1 mutation was also shown to
be an early event in MDS by Woll et al. [87] Of note,
although there is a strong association between
SF3B1 mutation and RS, the percentage of RS itself is
not predictive of survival [86]. The PACE-MDS
study, investigating the efficacy of the recombinant
fusion protein luspatercept, also demonstrated that
improvements in erythroid activity in anemic LR-MDS
patients were associated with the presence of SF3B1
mutations [88].

Attempts to incorporate genetic mutation data into the
existing IPSS-R are ongoing (Fig. 2) [27, 29]. The 2016
update to the WHO classification system also incorporates
key mutational data into diagnostic criteria. The revised
guidelines now include SF3B1 mutation as diagnostic of
MDS with RS; patients with SF3B1 mutation and as few as
5% with RS can be classified as having MDS-RS [43].

The choice of platform utilized to establish the pre-
sence or absence of mutations is dependent on the insti-
tution and availability of technology. The number of
genes on such panels is non-exhaustive and should be
directed by local capabilities and clinical utility. One
suggested comprehensive panel is highlighted in Table 5,
including common and rare genes that may be mutated in
MDS (with known hotspots) in addition to telomerase
complex genes. This is solely the authors’ suggestion and
is dependent upon the platform available, referral practice,
and clinical population. The actual turnaround time for the
resultant report is variable, ranging from 1 to 6 weeks in
routine clinical practice. Moreover, there is ongoing
debate about how detailed such a report should be; known
pathogenetic mutations should be reported although
debate currently exists concerning routine reporting of
detected variants of unknown significance.

How to practically distinguish idiopathic
cytopenia of undetermined significance,
idiopathic dysplasia of undetermined
significance, clonal cytopenia of
undetermined significance, and clonal
hematopoiesis of indeterminate potential
from LR-MDS

Increasingly, the clinical community is utilizing targeted
mutation testing in cases of cytopenia to aid both diagnostic
and prognostic stratification; however, simply determining
the presence of a myeloid disease-associated somatic
mutation is not diagnostic per se of MDS or related dis-
orders [58, 89].

It is well established that chronologic aging affects not
only the hematopoietic stem cell compartment and progeny
but also the supportive BM microenvironmental niche and the
interacting immune system. Recently, Vas et al. [90] descri-
bed how an aged niche might exert a distinct selection pres-
sure on dominant hematopoietic progenitor clones.
Furthermore, Jaiswal et al. [91] reported on whole exome

Fig. 2 Somatic mutations occurring in patients and their prognostic significance in the IPSS-Rm [25, 27]. aRemaining independent prognostic
factors in a Cox proportional hazard model including age and IPSS-R score [25]. IPSS-R(m) revised International Prognostic Scoring System
(molecular), MDS myelodysplastic syndromes, OS overall survival

Table 5 Suggested comprehensive targeted myeloid disorder gene
panel dependent on sequencing capabilities; prioritized based upon
sequencing capabilities, clinical relevance, and incidence

ABL1 ASXL1 ATRX BCOR BCOR1 BRAF CALR

CBL CBLB CBLC CDKN2A CEBPA CSF3R CUX1 

DNMT3A EGLN1 EPAS1 EPOR ETV6 EZH2 FBXW7 

FLT3 GATA1 GATA2 GNAS HRAS IDH1 IDH2 

JAK1 JAK2 RTEL1 KDM6A KIT KMT2A/ 
MLL-PTD KRAS 

MEK1 MPL MYD88 NLRP3 NOTCH1 NPM1 NRAS 

PDGFRA PHF6 PML PTEN PTPN11 RAD21 RUNX1 

SETBP1 SF3B1 SMC1A SMC3 SRSF2 STAG2 TET2

TP53 U2AF1 VHL WT1 ZRSR2 DDX41 TERC

TERT DKC1 USB1 CTC1 NOP10 NOP2 TINF2

Tier 1 

Tier 2 

Tier 3 
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sequencing (WES) data from 17 182 individuals unselected
for hematologic phenotype in which the frequency of
detectable somatic mutations rose appreciably with age. For
individuals aged 70 to 79 years (n= 2229), 80 to 89 years
(n= 317), and 90 to 108 years (n= 103), clonal mutations
were observed in 9.5%, 11.7%, and 18.4%, respectively. The
majority of the variants occurred in three genes: TET2,
DNMT3A, and ASXL1. Somatic mutations were associated
with an increased risk of hematologic malignancy,
cardiovascular-related deaths, and all-cause mortality. More-
over, Genovese et al. [92] reported on an unselected cohort of
12 380 Swedish patients in which up to 10% of patients older
than 65 years displayed clonal hematopoiesis with somatic
mutations; in contrast, this feature was observed in only 1% of
those younger than 50 years. Again, the most frequent
somatic mutations were in TET2, DNMT3A, and ASXL1. The
presence of this so-called age-related clonal hematopoiesis
was a strong predictive factor for the subsequent development
of a hematologic malignancy. Almost 42% of hematologic
malignancies arose in patients with evidence of clonality at
the time of sampling, at least 6 months before detectable
disease [92]. However, not all patients with evidence of clonal
hematopoiesis with MDS-type mutations occurring with age
will subsequently develop a hematologic disorder, called
clonal hematopoiesis of indeterminate potential (CHIP)
(Fig. 1). The working definition requires an allele burden of
≥2% [58, 93]. Further longitudinal studies are required to
correlate the presence of specific mutations and subsequent
development of bona fide MDS [43].

Idiopathic cytopenia of undetermined significance
(ICUS) is characterized by unexplained persistent cytopenia
(≥4 months), in 1 or more lineages, which fails to meet the
minimal diagnostic criteria for MDS and is not explained by
other hematologic or non-hematologic disorders (Fig. 1) [58].
Arbitrary cutoff figures remain hemoglobin <11 g/dl, platelet
count <100 × 109/l, and absolute neutrophil count <1.5 × 109/l
[94]. Although ICUS may involve more than 1 cell lineage,
the normal clinical situation is that of a severe unilineage
cytopenia. Individuals with ICUS may be further divided into
ICUS-A (anemia), ICUS-N (neutropenia), ICUS-T (throm-
bocytopenia), and ICUS-PAN (bi/pancytopenia [58]. The
prevalence of ICUS and clonal cytopenia of undetermined
significance (CCUS; in which a myeloid-disorder–associated
mutation is detected in a cytopenic patient (≥4 months) in the
absence of any other clonal BM neoplasm) is poorly under-
stood and robust long-term follow-up studies are lacking [58].
Although not as frequent, it is important to recognize patients
with idiopathic dysplasia of undetermined (unknown) sig-
nificance (IDUS), who present with persistent peripheral blood
or BM findings of dysplasia in >10% of cells but no persistent
cytopenias and no other reason for dysplasia and who do not
meet the minimal criteria for MDS. These individuals lack a
detectable MDS-associated mutation. No specific

management guidelines, beyond those recommended for a
specific cytopenia in ICUS or CCUS are available, but
ongoing observation is warranted overall.

Although the precise longer-term significance of ICUS,
IDUS, CHIP, and CCUS requires further clarification, we
are increasing our knowledge of factors that may predict
progression to MDS. Kwok et al. [95] analyzed 144 patients
with unexplained cytopenias. Based on cytomorphologic
assessment, 15% were diagnosed with ICUS and some
evidence of dysplasia, 69% with ICUS and no dysplasia, and
17% with MDS. Using a targeted 22-gene panel, mutations
were identified in 71% of MDS patients, 62% of patients
with ICUS and some dysplasia, and only 20% of ICUS
patients with no dysplasia. This represents a higher rate of
detection than would be expected even for age-related clonal
hematopoiesis. Similar rates were found when these results
were validated in a cohort of 91 patients with LR-MDS and
245 patients with ICUS [95]. More recently, Malcovati et al.
[96] evaluated the significance of somatic mutations in
patients with unexplained cytopenias. In a learning cohort of
683 patients, using a targeted panel of 40 genes, 64% of
patients carried a somatic mutation in at least 1 of these
genes. The presence of a somatic mutation with a variant
allele frequency (VAF; a measurement of the mutational
burden detected) ≥10% or having 2 or more detectable
mutations had a positive predictive value of 0.86 and 0.88,
respectively, for diagnosis of a myeloid disorder. Moreover,
mutations in spliceosome genes or comutation of TET2 or
DNMT3A with another mutation were strongly associated
with high risk of progression to a myeloid neoplasm.

It is extremely important to consider the VAF of the
mutation detected when using these panels and whether that
may contribute to the presence of cytopenia or not.
According to Steensma et al. [93], larger clones (VAF >
20%) may have more clinical significance than smaller
clones (VAF < 10%); however, further evaluation of the
dominant clonal architecture is needed. Future work may
define patterns of mutations and VAFs that are predictive of a
higher risk of progression to MDS. We suggest that follow-
up and frequency of monitoring of patients with ICUS and
CCUS is dependent on the degree of cytopenia, as well as the
mutational burden in those with CCUS.

How to accurately distinguish hypoplastic
mds from AA

Histologic differences between hypoplastic MDS (hMDS,
which accounts for 10–15% of all MDS) and AA, can be
subtle, and it can be extremely difficult, even for experi-
enced histopathologists, to accurately discriminate between
these two disorders. This is particularly true when the tre-
phine cellularity is low and aspirates are pauciparticulate
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and markedly hypocellular [97]. AA and hMDS may have
overlapping pathogenetic mechanisms, but clinically this
distinction is highly relevant, as the therapeutic approach
and prognosis will differ.

Dyserythropoiesis can be prominent in AA and is not
specific to hMDS. More than 10% hypogranular neutrophils
or pseudo–Pelger–Huet cells in the peripheral blood (in a
sample of at least 100 cells), presence of dysmegakaryopoi-
esis and marrow granulocytic dysplasia, the presence of RS,
fibrosis, abnormal localization of immature precursors, and
increased blasts suggest hMDS rather than AA [97]. How-
ever, overlapping features are not uncommon and these cri-
teria are not always accurate. In addition, it is important to
note that clonality is not uncommon in AA. Yoshizato et al.
[98] comprehensively described the presence of myeloid
disease-associated somatic mutations in 156 of 439 (35.5%)
AA patients as determined by targeted-capture deep
sequencing. Moreover, in targeted exome sequencing on the
BM of 150 patients with AA, 32 somatic mutations com-
monly identified in MDS were discovered in 19% of patients;
mutations in DNMT3A, ASXL1, and BCOR were most
common. The presence of these somatic mutations and dis-
ease duration of >6 months was associated with a 40% risk of
transformation to MDS [99]. It is difficult therefore to
accurately utilize a detected mutational pattern/clonal burden
for discrimination; for example in both AA and MDS,
mutations in DNMT3A and ASXL1 are common. In contrast,
PIG1A and BCOR/BCOR1 mutations are overrepresented in
AA [98, 99]. Collaborative approaches are required to revisit
the criteria for hMDS incorporating morphologic, genomic,
and immunologic features and are currently under way.

Delineating immune signatures in lr-mds

It is becoming increasingly accepted that the host back-
ground (e.g., human leukocyte antigen–type, DNA repair
capability, and genomic characteristics), microenviron-
mental factors, and, importantly, the type of cellular
immune response and immune checkpoints, may play a
significant role in modulating clonal evolution in LR-MDS.
As discussed previously, Kordasti et al. [36] were the first to
identify an increased number of Th17 cells and increased
Th17:Treg ratio in LR-MDS. Within the innate immune
system, myeloid-derived suppressor cells (MDSCs) func-
tion as pivotal effectors of ineffective hematopoiesis and are
markedly expanded in the BM of patients with LR-MDS.
BM levels of the TLR4/CD33 ligand S100A9, which pro-
motes both autocrine-reinforced MDSC activation and
paracrine-mediated myeloid progenitor cell death, are also
increased [100]. Utilization of findings such as these in
routine diagnostics is as yet premature, but many advances
are being made in this area.

When to consider inherited BM failure
syndrome or germline predisposition
syndromes in lr-mds

It is important to be alert to the possibility of inherited BM
failure syndromes such as dyskeratosis congenita or even
Fanconi anemia that may present later in life with an MDS
phenotype. Moreover, integration of genomic analyses into
diagnostic algorithms has led to an increasing recognition of
underlying germline anomalies associated with an increased
susceptibly to MDS. Recognition of such syndromes is
essential not only for accurate diagnostic classification but
also genetic counseling and psychological support for other
family members. A detailed analysis of diagnostic approa-
ches is outside the remit of this article, but several key
points will be highlighted. An accurate and extended family
history, with particular focus on hematologic disorders and
solid organ tumors, should be obtained, and the clinician
should be alert to any findings suggestive of a constitutional
BM failure disorder/germline predisposition that may pre-
sent as LR-MDS. Symptoms, signs, and laboratory findings
may be highly variable but may include a personal or family
history of cutaneous and nail anomalies, short stature, pre-
mature graying, thrombocytopenia, hemorrhagic phenom-
ena, and limb or tooth anomalies [101]. Imaging may reveal
the presence of cardiac abnormalities, liver fibrosis, or
pulmonary fibrosis [101]. Where the clinical situation
warrants telomere assessment, telomere length analysis
should be considered either by reverse transcription poly-
merase chain reaction or Flow-FISH [102] (a technique
combining flow cytometry with FISH), depending on local
expertise. Mutations in TERC (encoding the RNA compo-
nent of telomerase) or TERT (encoding the telomerase
reverse transcriptase enzyme) can also be evaluated, and
comprehensive telomerase gene complex targeted sequen-
cing panels are under development [103, 104]. Regulator of
telomere elongation helicase 1 (RTEL1) is a DNA helicase
critical to telomere maintenance and stability and con-
tributes to DNA repair. It plays a pivotal role in dismantling
T loops and counteracts telomeric G4-DNA [105]. Biallelic
germline mutations have been identified that clinically
manifest with the dyskeratosis congenita phenotype and
Hoyeraal–Hreidarsson syndrome [106]. Of relevance to this
diagnostic workup, Marsh et al. [107] have recently repor-
ted that heterozygous RTEL1 variants classified as likely
pathogenic can be associated with unexplained cytopenias,
AA, and hMDS, seen both at an early age and in adulthood.
These variants had variable penetrance, and it was noted
that telomere length analysis alone may not detect all pri-
mary telomere defects, as RTEL1 variants were detected that
were associated with eroded 3′ overhangs only. For Fanconi
anemia, although late presentation is more unusual, pre-
sence of a positive chromosomal breakage test (using agents
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such as mitomycin C or diepoxybutane) remains the gold
standard for diagnosis [108]. FANC gene mutational ana-
lyses can also be performed. Analyses of GATA2 mutational
status are also highly relevant given the well-documented
predisposition to MDS [109–111]. Lastly, a range of other
germline mutations may present with late-onset MDS and
these should always be considered dependent on phenotype
and history (Table 6) [103–121].

Conclusions

The diagnosis of LR-MDS can be complex due to the dif-
ficulty of distinguishing true MDS from age-related or
nonmalignant causes of cytopenia. There is also increasing
recognition of cases that represent ICUS, IDUS, or CCUS
rather than true MDS. However, as patient management is
currently determined by accurate disease classification and
prognostication, a delayed or incorrect diagnosis may delay
treatment and adversely affect outcomes. As new tools are
being developed to improve diagnostic/prognostic assess-
ment, the challenge is to incorporate these tools into a
streamlined, standardized diagnostic protocol. An up-to-
date diagnostic approach, such as the one described here,
will improve diagnostic accuracy and permit therapeutic
stratification where required. An example of an integrated
report of a LR-MDS case is shown in Fig. 3.

In conclusion, over the past decade, we have gained
understanding of how genomic characteristics, micro-
environmental factors, host background, type of adaptive/
innate immune response, and immune checkpoints may
play a significant role in modulating clonal evolution in
MDS and response to therapy. We hypothesize that future
developments will incorporate these findings into diagnostic
and prognostic models that will permit stratified therapeutic
intervention and improved outcomes.

Case study 1: a patient with delayed
presentation of a constitutional BM failure
syndrome

A 55-year-old man with a known diagnosis of pulmonary
fibrosis for the past 3 years was referred to hematology due
to progressive pancytopenia. He had no other significant
past medical history or family history of note. He was on
maintenance steroids for his pulmonary fibrosis. A physical
examination revealed that he had a cushingoid facies with
telangiectasia and evidence of vitiligo on his eyelids. His
liver edge was palpable at 2 cm and his spleen at 3 cm
below the right and left costal margins, respectively. A
routine workup demonstrated a hemoglobin level of 88 g/l,
a white blood cell count 2.5 × 109/l, neutrophils 1.9 × 109/l,

and platelets 75 × 109/l. His mean corpuscular volume was
raised at 102 fl. The patient had a normal reticulocyte count,
and normal B12 and folate levels. His ferritin level was
1945 g/l. His renal function was normal. His bilirubin level
was normal at 14 µmol/l, alkaline phosphatase 109 IU/l,
aspartate aminotransferase 78 U/l, and gamma-glutamyl
transpeptidase 402 U/l. His lactate dehydrogenase level
was normal. An abdominal ultrasound scan revealed hepa-
tomegaly, the liver demonstrated a diffuse coarse texture on
imaging, no focal lesions, and an enlarged spleen (17 cm).
Subsequent BM aspiration and trephine biopsy results
revealed a hypercellular marrow, trilineage dysplasia, and
blasts were evident at 2%. Reticulin deposition was
increased at grade 2, CD34+ 1%, and CD117 2%. BM
cytogenetics revealed 46 XY, deletion (20)(q11q13) in 30
metaphases. Overall diagnosis was consistent with MDS,
subtype MDS with Multilineage Dysplasia (MDS-MLD). A
targeted gene panel incorporating commonly mutated telo-
merase genes in addition to the most frequent MDS-
associated anomalies was performed, and this revealed that
the patient was heterozygous for a known pathogenetic
telomerase RNA component (TERC) gene mutation only.
This case highlights the importance of always considering a
constitutional BM failure syndrome dependent upon the
clinical presentation.

Case study 2: a patient with pancytopenia
and a hypocellular BM

A 59-year-old woman presented in June 2013 with new-
onset severe pancytopenia and demonstrated a hemoglobin
level of 76 g/l, a white blood cell count 1.8 × 109/l, neu-
trophils 0.4 × 109/l, and platelets 2 × 109/l. Her mean cor-
puscular volume was normal. Her symptoms were limited to
fatigue and intermittent epistaxis. No other significant
comorbidities were recorded. A peripheral blood film
showed normal red cell morphology and confirmed leuko-
penia and thrombocytopenia. There were no circulating
blasts. Flow cytometry revealed a small population of cells
with a PNH phenotype: glyscosylphosphatidylinositol
(GPI)-deficient CD15+ neutrophils 12%; GPI-deficient
CD64+monocytes 11.2%; and GPI-deficient red cells
0.5% only. Her lactate dehydrogenase level and hemolytic
markers were normal. An autoimmune screen and direct
antiglobulin test results were negative. No T cell large
granular lymphocyte population was identified on periph-
eral blood flow cytometry. BM aspiration and flow cyto-
metry revealed an aparticulate and severely hypocellular
sample, predominantly scattered non-clonal plasma cells
and lymphocytes. There was marked dyserthropoiesis and,
in assessable areas, mild granulocytic dysplasia. Conven-
tional karyotyping failed and a single-nucleotide
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polymorphism array (SNP-A) was normal. One hypolo-
bated megakaryocyte was seen. A targeted gene panel
analysis revealed the presence of an ASXL1 mutation
(c.1934dupG) with a variant allele frequency of 45%. A BM
trephine biopsy was severely hypocellular (10%), with
evidence of sparse yet hypolobated megakaryocytes, scat-
tered lymphocytes and plasma cells, and marked reduction
in erythropoiesis and granulocytic activity. There were no
excess blasts. Reticulin deposition was patchy yet grade 2 in
some regions. Based on these cumulative findings, she was
diagnosed with hypoplastic MDS with a small PNH clone
rather than AA, and commenced immunosuppressive ther-
apy with cyclosporine A to which she had mounted a
response by 3 months. Unrelated donors for a future allo-
graft were identified.
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