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Whilst the majority of myelodysplasia and acute myeloid leukemia (MDS/AML) cases are sporadic, rare familial 31 

predisposition syndromes have been delineated and now represent a separate disease entity in the revised 32 

World Health Organization (WHO) classification of myeloid neoplasms1. Germline mutations in ~14 disease 33 

genes have been uncovered thus far, with GATA2 representing one of the key transcriptional regulators 34 

commonly mutated in inherited MDS/AML2. Increasing evidence suggests aberrations in GATA2 impair its 35 

transcription and promoter activation leading to a loss-of-function, supporting a mechanism of GATA2 36 

haploinsufficiency3-5. Reduced penetrance, the observation that family members carry an identical germline 37 

mutation yet display variable clinical manifestations, is common and poses a clinical challenge in the diagnosis 38 

and management of familial leukemias, particularly when identifying ‘silent’ mutation carriers for genetic 39 

screening and exclusion as potential stem cell transplant donors6, 7. Indeed, we have noted that reduced 40 

penetrance is a feature amongst certain GATA2-mutated MDS/AML families8, especially those harboring 41 

missense germline mutations such as c.1061C>T (p.Thr354Met) (Table S1) although the precise molecular 42 

explanation of such occurrence has not been investigated.  43 

 44 

Analysis of five MDS/AML families harboring p.Thr354Met GATA2 mutations displayed significant intra- and 45 

inter-familial variations in disease latency, phenotype and penetrance (Figure S1). These observations suggest 46 

that individuals require additional co-operating events for the development of overt malignancy within the 47 

context of a shared germline mutation. To investigate this hypothesis further, we examined an extensive five-48 

generation pedigree9 (Figure 1A) where two first-degree cousins (IV.1 and IV.6) developed high-risk MDS/AML 49 

with monosomy 7 while a third cousin (IV.10) presented with recurrent minor infections and significant 50 

monocytopenia [0.1x109/L] and neutropenia [0.8x109/L] in year (yr.) 1-3 which subsequently stabilized 51 

(monocyte count, neutrophils [>1x109/L]) 3 years after presentation (Figure 1B). This contrasted with the 52 

parental generation (III.1, III.5 and III.7) where mutation carriers remain symptom-free with no evidence of 53 

hematopoietic abnormality over 60 years of age.  54 
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We therefore started with targeted deep sequencing of 33 genes frequently mutated in MDS/AML to define 55 

the landscape of secondary genetic mutations across mutation carriers. Notably, while no acquired mutations 56 

were detected in asymptomatic family members, all affected cousins analyzed shared an identical somatic 57 

ASXL1 mutation (p.Gly646TrpfsTer12) (Figure 1C). The variant allele frequency (VAF) however was lower (12%) 58 

in IV.10 and remained stable (range 12-6%) over a 6-year monitoring period. While the co-occurrence of ASXL1 59 

and GATA2 mutations has been proposed as one mechanism for driving the onset and severity of disease 60 

symptoms9-11, the low VAF of ASXL1 mutation and stable improvement in hematopoiesis at IV.10 later follow-61 

up suggested that a combination of GATA2-ASXL1 mutation alone is insufficient to promote clonal expansion 62 

and leukemic transformation, as this secondary somatic hit may not represent disease progression or identify 63 

when treatment is indicated. Intriguingly, apart from the ASXL1 mutation, no other acquired mutations were 64 

detected in the 33-myeloid genes assessed in the affected individuals. Moreover, on the basis of our 65 

observations and in agreement with previous studies12,13 it seems that monosomy 7 in IV.1 and IV.6 is acquired 66 

following acquisition of ASXL1 mutations, hence contributing to the malignancy but not initiating symptoms. 67 

We next considered whether disease symptoms are modulated by endogenous levels of GATA2. Quantitative 68 

real-time PCR (qRT-PCR) of bone marrow material demonstrated total GATA2 expression to be significantly 69 

lower in the symptomatic (IV.10-yr.1) compared with an asymptomatic carrier (III.7) (Figure 1D). Significantly, 70 

Sanger sequencing of cDNA template revealed striking allele-specific expression (ASE) favoring the mutant (T) 71 

allele with absence of the wildtype (WT) (C) allele expression in the symptomatic patient (IV.10) contrasting 72 

with biallelic expression in asymptomatic members (III.5 and III.7) (Figure 1E). This observation was validated 73 

by cDNA cloning of III.7 and IV.10 bone marrow samples and subsequent Sanger sequencing of individual 74 

clones (Figure S2). As this suggested that an allelic imbalance in WT:mutant GATA2 expression ratio may 75 

account for the variable disease penetrance in this pedigree, we assessed GATA2 expression in IV.10 over a 6-76 

year disease period at 4 time-points (yr.1, 3, 4 and 6) demonstrating increased GATA2 expression at later time-77 
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points (yr.4 and 6) (Figure 1D) coinciding with reactivation of the WT (C) allele expression (Figure 1F) and an 78 

improvement in hematological parameters, in the absence of any clinical intervention (Figure 1B). 79 

 80 

To test whether monoalleic GATA2 expression has an impact on the transcriptome driving the onset of disease 81 

symptoms, we performed RNA-seq with a view of examining downstream biological features distinctive of 82 

GATA2 monoallelic (IV.10-yr.1 and 3) vs. biallelic (IV.10-yr.4 and III.7) groups. Unsupervised analysis revealed a 83 

clear separation between GATA2 monoallelic and biallelic samples (Figure 1G, S3 and Table S2). It was 84 

noteworthy that certain canonical pathways and gene sets related to tumorigenesis (e.g. DNA replication and 85 

cell cycle) were enriched in GATA2 monoallelic vs. biallelic groups (Figure S4) potentially reflecting the clinical 86 

and phenotypic switch between these two groups. We also noted a significant overexpression of genes with 87 

GATA2 co-factor PU.1 motifs in their regulatory regions (p-value NES = 2.06) in GATA2 biallelic vs. monoallelic 88 

samples, in support of a recent finding14  that p.Thr354Met mutants bind and interact with PU.1 more tightly 89 

than WT thus leading to sequestration of PU.1 from its normal cellular functions. Consequently, the 90 

transcriptional activation triggered by PU.1 will be diminished in our GATA2 monoallelic samples. 91 

 92 

The differences observed in these gene expression profiles prompted us to explore the molecular mechanisms 93 

underlying monoallelic GATA2 expression. We hypothesized that these allele-specific changes in GATA2 94 

expression are driven by transient epigenetic mechanisms that include changes in DNA methylation and 95 

chromatin mark deposition. A CpG single nucleotide polymorphism (CpG-SNP) (rs1806462) [C/A] located 96 

within the promoter and 5’UTR of GATA2 overlapping a CpG island offered a marker to distinguish between 97 

mutant and WT alleles where this SNP creates/abolishes a CpG dinucleotide within the GATA2 promoter 98 

region (Figure 2A). More specifically, cDNA sequencing of 5’UTR allowed us to define haplotypes, where the 99 

promoter SNP allele (A) resides on the germline mutant GATA2 allele (T) (Figure 2Aii). Apart from IV.10, no 100 

other family members and only 2/12 individuals from pedigrees presented in (Figure S1) were heterozygous 101 
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for this SNP (one of whom is an asymptomatic carrier). Therefore, we do not infer that this haplotype would 102 

contribute to the progression of symptoms. Instead, we used this SNP to determine whether allele-specific 103 

differences in DNA methylation could explain the silencing of WT GATA2 allele expression observed in earlier 104 

time-points of IV.10. As illustrated in Figure 2B and S5, bisulfite sequencing of a 200bp region encompassing 105 

rs1806462 demonstrated a significant increase in promoter methylation in the WT allele of IV.10 in yr.1 and 106 

yr.3 following diagnosis, in contrast with the absence of allele-specific differences in methylation at a later 107 

time-point.  108 

We next sought to establish whether these allele-specific changes in GATA2 methylation and expression are 109 

accompanied by changes in chromatin structure at the promoter. H3K4me3 and H3K27me3 define poised or 110 

closed chromatin, respectively, rendering them more or less accessible for transcription factors thereby 111 

regulating gene expression15. The deposition of these bivalent marks was assessed in IV.10 by allele-specific 112 

chromatin immunoprecipitation (ChIP) followed by Sanger sequencing within GATA2 promoter region 113 

encompassing the SNP rs1806462 [C/A]. While there were no apparent allele-specific differences in 114 

H3K27me3 deposition across the different time-points of IV.10, an enrichment in the deposition of H3K4me3 115 

on the promoter of the mutant allele (A) relative to the WT allele (C) was noted in IV.10 monoallelic samples 116 

(yr.1 and 3) (Figure 2C, S6 and S7). In contrast, and consistent with the pattern observed with DNA 117 

methylation, there was no demonstrable difference in H3K4me3 deposition in the IV.10 biallelic sample (yr.4), 118 

coinciding with reactivation of the WT allele expression and an overall improvement in clinical parameters. We 119 

believe that these observations are in keeping with the notion that H3K4me3 occupancy inhibits de novo DNA 120 

methylation16 which was borne out by subsequent bisulfite sequencing of H3K4me3-enriched DNA from our 121 

ChIP experiments demonstrating that DNA methylation and H3K4me3 deposition are mutually exclusive in our 122 

IV.10 samples (Figure S8).  123 

 124 
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Collectively, our findings provide a step forward in understanding the molecular mechanisms underlying 125 

reduced penetrance in GATA2-mutated MDS/AML pedigrees, which may be governed by the acquisition of 126 

additional co-operating mutations (e.g. ASXL1) combined with dynamic epigenetic reprogramming and 127 

subsequent allele-specific expression of GATA2 mutant allele, adding another level of complexity to the 128 

(epi)genetic basis of familial MDS/AML. 129 
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Figure Legends 212 

Figure 1: Investigating the molecular mechanisms underlying the reduced penetrance of germline 213 

p.Thr354Met mutations observed in a GATA2-mutated MDS/AML family. (A) Genogram of the GATA2-214 

mutated pedigree. Squares denote males and circles denote females. This 5-generation MDS/AML family 215 

presented to Barts Health hospital in London with identical germline GATA2 mutations (p.Thr354Met; 216 

c.1061C>T) and variable clinical manifestations. Two first-degree cousins (IV.1 and IV.6) presented at 23 and 217 

18 years of age, respectively, with high-grade MDS transforming to AML and monosomy 7. Both cousins died 218 

post allogeneic hematopoietic stem cell transplant (HSCT) due to transplant-related complications (IV.1 from 219 

graft vs. host disease (GvHD) and IV.6 from relapsed MDS/AML). Ten years later, their first cousin (IV.10) 220 

developed symptoms at 31 years including recurrent minor infections and significant leukopenia 221 

(monocytopenia [0.1x109/L] and neutropenia [0.8x109/L]) with mild macrocytosis and normal hemoglobin and 222 

platelet counts. She remains under close surveillance where her blood counts are routinely monitored. All four 223 

of her children have inherited her WT GATA2 allele. Similarly, members (IV.7, IV.8 and IV.9) were screened for 224 

the mutation and all have a WT GATA2 configuration. The paternal grandmother (II.2) of IV.10 as well as her 225 

paternal great-uncle (II.3) and great-grandmother (I.2) all were reported to have died of AML (ages of disease 226 

onset were 53, 24 and 53 years old respectively). Not only did GATA2 mutations correlate with early age of 227 

disease onset in the 4th generation (IV.1/23yr, IV.6/18yr and IV.10/31yr), but the parental 3rd generation 228 

carriers (III.1, III.5 and III.7) remain hematologically normal and symptom-free into their mid-late 60’s. No 229 

material was available from other family members. (B) A clinical time-line of IV.10 showing the change in 230 

clinical parameters over the course of disease presentation. Photographs of peripheral blood smears from 231 

IV.10 (yr.1,3,4 and 6) stained with May-Grünwald Giemsa staining. Magnification: 20×. (C) Secondary ASXL1 232 

mutations: variant allele frequencies of GATA2 germline mutation and ASXL1 acquired mutation. Samples 233 

from 3 individuals were sequenced: one asymptomatic parent (III.7), one deceased MDS/AML cousin (IV.6) 234 

and across 3 time-points (yr.1, 4 and 6) from the symptomatic patient (IV.10) reflecting disease evolution.  235 
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(D) GATA2 global expression measured by qRT-PCR of bone marrow samples and normalized to healthy bone 236 

marrow control: downregulation in IV.10_yr.1 compared with III.7 and downregulation in IV.10_yr.1-3 GATA2 237 

expression compared with IV.10_yr.4-6. The average of five independent experiments is shown. Statistical 238 

significance was determined at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***) using a t-test with Bonferroni 239 

correction. Error bars represent standard error of the mean (SEM). (E) GATA2 monoallelic expression of the 240 

mutant allele in symptomatic (IV.10) vs. asymptomatic carriers (III.5 and III.7) as measured by cDNA 241 

sequencing of bone marrow samples. (F) Correlation of monoallelic GATA2 expression with disease symptoms 242 

across the time-points studied in IV.10 with reactivation of the WT allele “C” expression noted 3 years after 243 

presentation, concurrent with improvements in hematological parameters. (G) RNA-seq analysis: principal 244 

component analysis (PCA) plot showing a good separation between GATA2 biallelic (green) and monoallelic 245 

(blue) groups based on all transcriptomes.  246 

 247 

Figure 2: Elucidating the molecular mechanisms driving allele-specific changes in GATA2 248 

expression. (Ai) A non-coding SNP (rs1806462 [C/A]) located within the second GATA2 promoter region 249 

overlapping a CpG island was detected in the symptomatic (IV.10) but not in asymptomatic members (III.7). 250 

(Aii) Given the location of promoter 2 SNP within the 5’UTR, a haplotype between the SNP allele “A” and the 251 

germline mutant allele “T” was established, providing a means of distinguishing between mutant and WT 252 

alleles in subsequent experiments. (Aiii) This promoter SNP[C/A] removes a CpG methylation site in the 253 

mutant allele “A” and generates a CpG methylation site in the WT allele “C”. (B) The proportion of methylated 254 

CpGs between mutant and WT alleles across the 3 time-points of IV.10. WT allele is significantly more 255 

methylated than mutant allele in monoallelic samples (yr.1 and yr.3) whereas no significant allele-specific 256 

differences in methylation were observed in a biallelic expressing sample (yr.6). The average of three 257 

independent experiments is shown. (C) Quantification of mutant and WT allele ChIP sequence peak heights 258 

across the time-points of IV.10 based on Sanger sequencing. H3K4me3 activation mark favoring the mutant 259 
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allele was enriched in monoallelic samples (yr.1 and yr3) compared with the biallelic sample (yr.4). The 260 

average of three independent experiments is shown. Statistical significance was determined at p < 0.05 (*), p < 261 

0.01 (**) and p < 0.001 (***) using a t-test with Bonferroni correction. N.S corresponds to non-significant 262 

comparisons. Error bars represent SEM. 263 

 264 

 265 
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