Article | Published:

Stem cell transplantation

Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease

Leukemiavolume 32pages24832494 (2018) | Download Citation

Abstract

The therapeutic benefits of allogeneic hematopoietic stem cell transplantation (allo-HSCT) are derived from the graft-versus-leukemia (GvL) effects of the procedure. There is a strong association between the GvL effects and graft-versus-host disease (GvHD), a major life-threatening complication of allo-HSCT. The limiting of GvHD while maintaining the GvL effect remains the goal of allo-HSCT. Therefore, identifying optimal therapeutic targets to selectively suppress GvHD while maintaining the GvL effects represents a significant unmet medical need. We demonstrate that the dual inhibition of interferon gamma receptor (IFNγR) and interleukin-6 receptor (IL6R) results in near-complete elimination of GvHD in a fully major histocompatibility complex–mismatched allo-HSCT model. Furthermore, baricitinib (an inhibitor of Janus kinases 1 and 2 (JAK1/JAK2) downstream of IFNγR/IL6R) completely prevented GvHD; expanded regulatory T cells by preserving JAK3-STAT5 signaling; downregulated CXCR3 and helper T cells 1 and 2 while preserving allogeneic antigen-presenting cell-stimulated T-cell proliferation; and suppressed the expression of major histocompatibility complex II (I-Ad), CD80/86, and PD-L1 on host antigen-presenting cells. Baricitinib also reversed established GvHD with 100% survival, thus demonstrating both preventive and therapeutic roles for this compound. Remarkably, baricitinib enhanced the GvL effects, possibly by downregulating tumor PD-L1 expression.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ, et al. IBMTR severity index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97:855–64.

  2. 2.

    Martin PJ, Rizzo JD, Wingard JR, Ballen K, Curtin PT, Cutler C, et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18:1150–63.

  3. 3.

    Choi J, Ziga ED, Ritchey J, Collins L, Prior JL, Cooper ML, et al. IFNγR signaling mediates alloreactive T-cell trafficking and GVHD. Blood. 2012;120:4093–103.

  4. 4.

    Choi J, Cooper ML, Alahmari B, Ritchey J, Collins L, Holt M, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE. 2014;9:e109799.

  5. 5.

    Spoerl S, Mathew NR, Bscheider M, Schmitt-Graeff A, Chen S, Mueller T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123:3832–42.

  6. 6.

    Carniti C, Gimondi S, Vendramin A, Recordati C, Confalonieri D, Bermema A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015;21:3740–9.

  7. 7.

    Zeiser R, Burchert A, Lengerke C, Verbeek M, Maas-Bauer K, Metzelder SK, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29:2062–8.

  8. 8.

    Khoury HJ, Langston AA, Kota VK, Wilkinson JA, Pusic I, Jillella A, et al. Ruxolitinib: a steroid sparing agent in chronic graft-versus-host disease. Bone Marrow Transplant; Epub ahead of print 24 January 2018. https://doi.org/10.1038/s41409-017-0081-5.

  9. 9.

    Quintas-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.

  10. 10.

    Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9.

  11. 11.

    Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, et al. Immune response in mice that lack the interferon-gamma receptor. Science. 1993;259:1742–5.

  12. 12.

    Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr., Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

  13. 13.

    Choi J, Ritchey J, Prior JL, Holt M, Shannon WD, Deych E, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood. 2010;116:129–39.

  14. 14.

    Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43:244–58.

  15. 15.

    Kennedy GA, Varelias A, Vuckovic S, Le Texier L, Gartlan KH, Zhang P, et al. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 2014;15:1451–9.

  16. 16.

    Alam N, Xu W, Atenafu EG, Uhm J, Seftel M, Gupta V, et al. Risk model incorporating donor IL6 and IFNG genotype and gastrointestinal GVHD can discriminate patients at high risk of steroid refractory acute GVHD. Bone Marrow Transplant. 2015;50:734–42.

  17. 17.

    Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50.

  18. 18.

    Cooper ML, Choi J, Karpova D, Vij K, Ritchey J, Schroeder MA, et al. Azacitidine mitigates graft-versus-host disease via differential effects on the proliferation of T effectors and natural regulatory T cells in vivo. J Immunol. 2017;198:3746–54.

  19. 19.

    Briso EM, Dienz O, Rincon M. Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J Immunol. 2008;180:7102–6.

  20. 20.

    Kim MK, Shin H, Park KS, Kim H, Park J, Kim K, et al. Benzimidazole derivatives as potent JAK1-selective inhibitors. J Med Chem. 2015;58:7596–602.

  21. 21.

    Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184:5298–307.

  22. 22.

    Fujii N, Hiraki A, Aoe K, Murakami T, Ikeda K, Masuda K, et al. Serum cytokine concentrations and acute graft-versus-host disease after allogeneic peripheral blood stem cell transplantation: concurrent measurement of ten cytokines and their respective ratios using cytometric bead array. Int J Mol Med. 2006;17:881–5.

  23. 23.

    Ma H, Lu C, Ziegler J, Liu A, Sepulveda A, Okada H, et al. Absence of Stat1 in donor CD4(+) T cells promotes the expansion of Tregs and reduces graft-versus-host disease in mice. J Clin Invest. 2011;121:2554–69.

  24. 24.

    Fu J, Wang D, Yu Y, Heinrichs J, Wu Y, Schutt S, et al. T-bet is critical for the development of acute graft-versus-host disease through controlling T cell differentiation and function. J Immunol. 2015;194:388–97.

  25. 25.

    Fu J, Wu Y, Nguyen H, Heinrichs J, Schutt S, Liu Y, et al. T-bet promotes acute graft-versus-host disease by regulating recipient hematopoietic cells in mice. J Immunol. 2016;196:3168–79.

  26. 26.

    Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, et al. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112:1501–9.

  27. 27.

    Franceschini D, Paroli M, Francavilla V, Videtta M, Morrone S, Labbadia G, et al. PD-L1 negatively regulates CD4+CD25+Foxp3+Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest. 2009;119:551–64.

  28. 28.

    Ni X, Song Q, Cassady K, Deng R, Jin H, Zhang M, et al. PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells. J Clin Invest. 2017;127:1960–77.

  29. 29.

    Kaushansky K. Thrombopoietin: the primary regulator of megakaryocyte and platelet production. Thromb Haemost. 1995;74:521–5.

  30. 30.

    Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem. 1995;270:4979–82.

  31. 31.

    Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Taylor PA, Mellor AL, Munn DH, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood. 2008;111:3257–65.

  32. 32.

    Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG, Panoskaltsis-Mortari A, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood. 2013;122:3062–73.

  33. 33.

    Orabona C, Pallotta MT, Grohmann U. Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. Mol Med. 2012;18:834–42.

  34. 34.

    Shirey KA, Jung JY, Maeder GS, Carlin JM. Upregulation of IFN-gamma receptor expression by proinflammatory cytokines influences IDO activation in epithelial cells. J Interferon Cytokine Res. 2006;26:53–62.

  35. 35.

    Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Transplant. 2012;12:2575–87.

  36. 36.

    Burman AC, Banovic T, Kuns RD, Clouston AD, Stanley AC, Morris ES, et al. IFNgamma differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. Blood. 2007;110:1064–72.

  37. 37.

    Mark AS, Jean Khoury H, Madan J, Haris A, Gary JS, et al. Blood. 2016; 128:390.

  38. 38.

    Teschner D, Distler E, Wehler D, Frey M, Marandiuc D, Langeveld K, et al. Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant. 2014;49:138–44.

Download references

Acknowledgements

J.C. is supported by the Amy Strelzer Manasevit Research Program, which is funded through the Be The Match Foundation and the National Marrow Donor Program; the Rays of Hope St. Baldrick’s Research Grant (St. Baldrick’s Foundation); Washington University SPORE-CDP (P50 CA171963-01); Washington University DDRCC grant (P30 DK052574); Alvin J. Siteman Cancer Center Siteman Investment Program (supported by the Foundation for Barnes-Jewish Hospital Cancer Frontier Fund, National Cancer Institute Cancer Center Support Grant, P30 CA091842, and Barnard Trust); and the Bryan Thomas Campbell Foundation. J.F.D. is supported by the National Cancer Institute (P50 CA94056-09, R35 CA210084-01, P01 CA101937 and P50 CA171963-01) and the Bryan Thomas Campbell Foundation. L.M. and S.A. are supported by the National Institutes of Health (P50 CA94056). I.T. is supported by the National Institute of General Medical Sciences COBRE Grant (P30-GM110703) and the Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research-KAKENHI, 16H07356). We thank the Alvin J. Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital in St. Louis, MO for the use of the immunomonitoring laboratory, which provided the cytokine analysis service. The Siteman Cancer Center is supported in part by an NCI Cancer Center Support Grant #P30 CA091842. We thank Jennifer Gann of Gann Editorial Group (St. Louis, MO) for editorial assistance.

Author contributions

Conceptualization: J.C., M.L.C., and J.F.D.; methodology: J.C., M.L.C., and J.F.D.; investigation and validation: J.C., M.L.C., K.S., K.A., K.R.V., B.W., L.M., J.N., J.R., and B.A.; formal analysis: J.C., M.L.C., K.S., and L.M.; resources: S.A. and I.T.; writing—original draft: J.C., M.L.C., and J.F.D.; writing—review and editing: J.C., M.L.C., K.S., S.A., I.T., M.A.S., and J.F.D.; visualization: J.C., M.L.C., K.S., K.R.V., and L.M.; supervision: J.C. and J.F.D.; funding acquisition: J.C. and J.F.D.

Author information

Affiliations

  1. Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA

    • Jaebok Choi
    • , Matthew L. Cooper
    • , Karl Staser
    • , Kidist Ashami
    • , Kiran R. Vij
    • , Bing Wang
    • , Jessica Niswonger
    • , Julie Ritchey
    • , Bader Alahmari
    • , Mark A. Schroeder
    •  & John F. DiPersio
  2. Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO, 63110, USA

    • Karl Staser
  3. Department of Radiology, Molecular Imaging Center, Washington University School of Medicine, St. Louis, MO, 63110, USA

    • Lynne Marsala
    •  & Samuel Achilefu
  4. Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, 589-8511, Japan

    • Ikuo Tsunoda

Authors

  1. Search for Jaebok Choi in:

  2. Search for Matthew L. Cooper in:

  3. Search for Karl Staser in:

  4. Search for Kidist Ashami in:

  5. Search for Kiran R. Vij in:

  6. Search for Bing Wang in:

  7. Search for Lynne Marsala in:

  8. Search for Jessica Niswonger in:

  9. Search for Julie Ritchey in:

  10. Search for Bader Alahmari in:

  11. Search for Samuel Achilefu in:

  12. Search for Ikuo Tsunoda in:

  13. Search for Mark A. Schroeder in:

  14. Search for John F. DiPersio in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Jaebok Choi or John F. DiPersio.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41375-018-0123-z