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Philadelphia-negative myeloproliferative neoplasms
(MPN), namely polycythemia vera (PV), essential throm-
bocythemia (ET) and myelofibrosis (MF), are closely-

related stem cell disorders, characterized by abnormal pro-
liferation and differentiation of hematopoietic progenitors
[1, 2]. Transitions between disease entities are common,
shaping a “biological continuum” from an early stage with a
relatively milder phenotype (PV and ET) toward an
advanced phase, termed secondary myelofibrosis (sMF) [3].
Similarly, pre-fibrotic and overt primary myelofibrosis (pre-
PMF and overt-PMF, respectively), according to the 2016
WHO criteria [4] have been shown to be aligned along a
phenotypic gradient of severity [5]. Although different
biomarkers have been associated with MPN thrombotic
comorbidities [6, 7], no known parameters for predicting
whether PV or ET will advance to sMF or for establishing a
timeline for the progression of pre-PMF into overt disease
currently exist.

Chronic inflammation plays a pivotal role in MPN
pathogenesis, triggering neoplastic transformation and cat-
alyzing clonal evolution toward end-stage disease. Indeed,
MPN cells release a plethora of pro-inflammatory products,
which in turn elicits genomic instability and drive clonal
myeloproliferation [3, 8]. It has been demonstrated that: (i)
MF patients display higher circulating levels of several pro-
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inflammatory cytokines as compared to other chronic
myeloproliferative disorders as well as to healthy subjects
[9], with IL-8, IL-2R, IL-12 and IL-15 levels independently
holding prognostic value [10]; (ii) MCP-1 (monocyte che-
moattractant protein-1, also known as CCL2), soluble IL-
2R and IL-15 levels cluster with splenomegaly [11]; (iii)
MCP-1 levels correlate with lower anemia response to
pomalidomide [11].

MCP-1 is the main chemotactic factor for monocyte
migration in sites of inflammation and contributes to organ
fibrotic changes [12]. MCP-1 expression levels are highly
variable among individuals, potentially contributing to dif-
ferential susceptibility to various inflammatory conditions
[13]. An A to G single-nucleotide polymorphism (SNP) in
MCP-1 enhancer region (rs1024611, originally designated
as –2518 G or –2578 G) was found to be responsible for
higher levels of MCP-1 production by monocytes upon
inflammatory noxa [14], and has been associated to several
chronic inflammatory conditions such as autoimmune dis-
orders, atherosclerosis and chronic infectious diseases [15].
In the present study, we investigated whether the -2518 A/G
SNP of MCP-1 is a potential indicator of MPN suscept-
ibility and/or disease phenotype.

After approval by the local ethical committee (prot. n
27182) and written informed consent, n 177 Caucasian MPN
patients were recruited, of which n 44 PV, n 65 ET, n 68 MF
(n 45 PMF and n 23 sMF). For PMF patients, histopathol-
ogy, clinical and laboratory data were reviewed and diag-
noses attributed to pre-PMF (n 12) or overt-PMF (n 33)
according to the revised 2016 WHO criteria [4]. DNA was
extracted by PureLink® Genomic DNA Kit (Invitrogen) from
200 µl of whole blood and from buccal mucosa cells fol-
lowing manufacturer’s instructions. DNA from 149 age-
matched and sex-matched Caucasian healthy subjects
(CTRL) was provided by the Unit of Medical Genetics,
University Hospital of Parma. Patients and CTRL genotyp-
ing was performed by TaqMan® Predesigned SNP Geno-
typing Assays (Applied Biosystems). Patients’ data were
retrospectively analyzed from cataloged hospital records.

For statistical analysis, numerical variables were sum-
marized by their median and range, and categorical vari-
ables by count and relative frequency (percentage).
Differences in the distribution of continuous variables were
calculated by Mann–Whitney/Kruskal–Wallis tests, while
categorical variable comparison were established by χ2/
Fisher exact test. A P value <0.05 was considered statisti-
cally significant. Analysis was performed with dedicated
software (Epi Info 7.2.1.0; CDC, Atlanta, GA, USA or
StatView 5.0; SAS Institute Inc, Cary, NC, USA).

Case and control groups were aligned for age and gender
distribution. Clinical and biological characteristics of MPN
patients and CTRL are summarized in Supplemental
Table 1.

Genotypic and allelic frequencies of the MCP-1 -2518 A/
G SNP in MPN and CTRL are reported in Table 1. Geno-
typic frequencies were in Hardy–Weinberg equilibrium
both in the MPN patients and CTRL (P > 0.05). No statis-
tical differences were found by comparing genotypic and
allelic frequencies of overall MPN, PV, ET and MF patients
vs. CTRL, as well as between single disease entities.

Focusing on MF, which is the MPN variant characterized
by the highest inflammation burden [16], we evaluated
whether polymorphic genotypes could be associated to spe-
cific disease subtype(s) (based on the 2016 WHO criteria) or
to disease phenotype aggressiveness based on the hemato-
logic characteristics at the time of diagnosis (Table 2).

We found that the subjects carrying either a heterozygous
or homozygous genotype for the -2518 A/G SNP (A/G+G/
G) were significantly more frequent in sMF vs. PMF (17/23,
73.9% vs. 14/45, 31.1%, respectively, P= 0.0008, Table 2).
Additionally, sMF was significantly more frequent in A/G
+G/G patients than either pre-PMF (1/12, 8.3%, P=
0.0002) or overt-PMF (13/33, 39.4%, P= 0.011). Notably,
the number of A/G+G/G subjects was also significantly
higher in sMF as compared to CTRL (P= 0.022) (Table 2).
The observation that sMF is enriched in allele-G carriers is
consistent with the concept of myelofibrosis as a burn-out
phase of a long process that starts with ET/PV and advances

Table 1 Genotypic and allelic frequencies of the -2518 A/G SNP of MCP-1 in overall MPN population, PV, ET, MF patients and CTRL

Genotypic frequencies Allelic frequencies

A/A
n (%)

A/G
n (%)

G/G
n (%)

A/G+G/G
n (%)

A allele G allele

MPN (n 177) 94 (53.1) 74 (41.8) 9 (5.1) 83 (46.9) 0.740 0.260

PV (n 44) 26 (59.1) 15 (34.1) 3 (6.8) 18 (40.9) 0.761 0.239

ET (n 65) 31 (47.7) 33 (50.8) 1 (1.5) 34 (52.3) 0.731 0.269

MF (n 68) 37 (54.4) 26 (38.2) 5 (7.4) 31 (45.6) 0.735 0.257

CTRL (n 149) 90 (60.4) 53 (35.6) 6 (4.0) 59 (39.6) 0.782 0.218

P n.s. in all comparisons
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Table 2 Genotype–phenotype correlations in MF patients

No. of cases A/A A/G+G/G P [O.R., 95% C.I.]

Disease type

PMF, n (%) 45 31 (68.9) 14 (31.1) P= 0.0008 vs. sMF
[6.23; 2.04–19.32]

Pre-PMF, n (%) 12 11 (91.7) 1 (8.3) P= 0.0002 vs. sMF
[31.17; 3.29–295.35]
P= 0.07 vs. overtPMF

Overt-PMF, n (%) 33 20 (60.6) 13 (39.4) P= 0.011 vs. sMF
[4.36; 1.36–13.95]

sMF n (%) 23 6 (26.1) 17 (73.9) P= 0.022 vs. CTRL
[3.07; 1.14–8.32]

Age

Median (range), years 68 69.0 (29–84) 70.0 (30–86) P= 0.61

>65 years, n (%) 46 25 (54.4) 21 (45.6) P= 0.99

Gender

Male, n (%) 41 21 (51.2) 20 (48.8) P= 0.51

Female, n (%) 27 16 (59.3) 11 (40.7)

IPSS

Low/intermediate-1, n (%) 42 28 (66.7) 14 (33.3) P= 0.0078
[4.29; 1.42–12.91]Intermediate-2/high, n (%) 22 7 (31.8) 15 (68.2)

Hemoglobin

Median (range), g/L 62 12.7 (5–15.9) 11.7 (7.3–15.5) P= 0.062

<100 g/L, n (%) 13 4 (30.8) 9 (69.2) P= 0.036
[3.89; 1.04–14.41]

WBC

Median (range), x109/L 62 9.2 (3.9–57.8) 12.1 (2.9–57.0) P= 0.78

<4 × 109/ L or >25 × 109/L, n (%) 7 3 (42.9) 4 (57.1%) P= 0.44

Platelets

Median (range), ×109/L 60 560 (99–1322) 376 (69–984) P= 0.10

LDH

Median (range), U/L 59 622 (205–1620) 751 (343–1580) P= 0.22

>Normal range, n (%) 47 26 (55.3) 21 (44.7) P= 0.85

Constitutional symptoms

Yes, n (%) 47 7 (41.8) 10 (58.8) P= 0.19

No, n (%) 17 28 (59.6) 19 (40.4)

Circulating blasts

<1%, n (%) 53 33 (62.3) 20 (37.4) P= 0.014
[6.6; 1.27–34.23]≥1%, n (%) 10 2 (20.0) 8 (80.0)

Grading of fibrosis

0–I, n (%) 29 20 (69.0) 9 (31.0) P= 0.048
[2.78; 0.99–7.43]≥II, n (%) 36 16 (44.4) 20 (55.6)

Spleen (long. Ø by US)
median (range), cm

68 14.0 (7.5–30) 17.0 (10–30) P= 0.1

JAK2V617F mutation

Positive, n (%) 40 21 (52.5) 19 (47.5) P= 0.44

Negative, n (%) 19 12 (63.2) 7 (36.8)

Major thrombotic events

Yes, n (%) 22 11 (50.0) 11 (50.0) P= 0.55

No, n (%) 45 26 (57.8) 19 (42.2)

Statistically significant associations are highlighted in bold, and relative Odds ratio (O.R.) and 95% Confidence Interval (C.I.) are reported

Age, IPSS risk category, leukocytes, hemoglobin, platelets, presence of blasts, LDH constitutional symptoms and spleen size refer to the time of
diagnosis. “No. of cases” (second column) refers to: (i) for non-continuous variables, the no. of patients presenting the indicated parameter (i.e., no.
of JAK2V617 positive and negative patients); (ii) for continuous variables, the no. of patients evaluated for that parameter (i.e., age at the time of
diagnosis).
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toward a more progressive disease state, characterized by
higher inflammation burden [3, 16]

Genotype–phenotype correlation studies in MF patients
revealed a higher frequency of allele-G carriers (A/G+G/
G) in: (i) intermediate-2/high vs. low/intermediate-1 IPSS
risk group (15/22, 68.2% vs. 14/42, 33.3%, respectively, P
= 0.0078), (ii) patients with lower (Hb < 100 g/L) vs. higher
(Hb ≥ 100 g/dL) hemoglobin levels (9/13, 69.2% vs. 18/49,
36.7%, P= 0.036, (iii) patients with ( ≥ 1%) vs. patients
without (<1%) circulating blasts (8/10, 80%, vs. 20/53,
37.4%, P= 0.014), (iv) patients with higher (≥II) vs. lower
(0–I) grading of bone marrow fibrosis (20/36, 55.6% vs. 9/
29, 31.0%, P= 0.048) (Table 2).

No associations with age, gender, white blood cell and
platelet count, LDH levels, presence of constitutional
symptoms, spleen size, JAK2V617F mutation, and history
of major thrombotic events were found (Table 2).

Finally, to evaluate whether the MCP-1 -2518 A/G SNP
is inherited or acquired by hematopoietic stem cells, we
tested the SNP in non-clonal cells of 14 MPN patients (10
MF, 3 ET and 1 PV) harboring the G allele, as assessed by
whole blood genotyping. The analysis of buccal mucosal
cells revealed that all individuals were germline carriers of
the polymorphism.

In conclusion, our data suggest that the -2518 A/G SNP of
MCP-1 could represent a host genetic predisposition factor for
sMF and may serve as a biomarker of disease severity in MF,
as implied by its association with higher IPSS, peripheral
blasts, lower hemoglobin and higher grading of bone marrow
fibrosis. In particular, the association of the SNP with higher
grading of bone marrow fibrosis as well as with severe ane-
mia is consistent with the well-defined pro-fibrotic role of this
chemokine [12] and the previously described observation that
MCP-1 levels correlates with poor anemia response [11]. We
speculate that this SNP, after prospective validation studies,
may configure as a genetic biomarker identifying ET and PV
patients who more likely will progress toward a spent phase.
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The cure rate in AML depends on patient’s age and per-
formance status, cytogenetics, early blast clearance and
sustainable first complete remission. Investigation of mini-
mal residual disease (MRD) is possible by multiparameter-
flow cytometry or molecular techniques. Recent findings
have further depicted a broad spectrum of molecular mar-
kers in AML in 99% of patients [1]. This broadens the set of
targets for MRD assessment and will hopefully help to
better individualize treatment strategies. MRD monitoring
by qPCR is feasible in AML with RUNX1-RUNX1T1
fusion. The absence of RUNX1-RUNX1T1 transcripts is
considered as complete molecular remission (CMR). Risk
stratification according to MRD is possible and initial stu-
dies allocating MRD positive patients to allogeneic stem
cell transplantation have been undertaken [2]. However,
despite CMR about 10–30% of patients relapse [3, 4].

This analysis aims to understand the clinical use of PCR
based MRD monitoring in AML with RUNX1-RUNX1T1
fusion outside clinical trials. We specifically address chosen
time points for measurements, choice of peripheral blood
(PB) vs bone marrow (BM) as sample material for follow-
up testing and evaluate the value of CMR as an absolute

MRD negativity. In addition, we performed 63 gene panel
sequencing to analyze recurrent mutations and their asso-
ciation to CMR and outcome.

Between 2005 and 2017 a total of 134 intensively treated
AML patients with RUNX1-RUNX1T1 fusion were diag-
nosed and followed at our laboratory (for characteristics see
supplemental table 1). We analyzed 1081 individual sam-
ples (supplemental table 2) during that time. We applied
absolute quantitative real-time PCR to measure RUNX1-
RUNX1T1/ABL1 ratios [5]. Complete molecular remission
(CMR) was defined as qPCR ratio of 0 (sensitivity 0.001%)
and negative nested PCR. Low MRD was assigned to
patients with qPCR ratio of 0 but positive nested PCR and
high MRD was assigned to all patients with a ratio above 0.

There was no pre-specified time point for MRD mon-
itoring and the median time between two investigations of
2.9 months (range 0.5–61 months) reflects the everyday use
of MRD in clinical practice. CMR was reached in 79 out of
134 patients (59%) after a median of 8 months (range
1–46 months). CMR was preferentially defined in BM and
only 1 out of 79 patients had CMR detected in PB only. In
total 15 out of 134 (11%) patients reached low MRD with a
positive nested PCR, and 40 out of 134 (30%) reached high-
level MRD (median lowest RUNX1-RUNX1T1/ABL1 ratio
of 0.022% (range 0.001–5.4%). Median relapse free survi-
val (RFS) of patients with CMR was not reached (RFS at 2
years 82%; 95% CI, 75–92%) and significantly longer (both
p < 0.001) than for low MRD and high MRD patients
(16 months (range 5–65) and 13 months (range 3–45),
respectively, not significant (n.s.), Fig. 1a). Overall survival
rate at 5 years was 80% (95% CI, 66–88%) and 75% (95%
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