Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding

Abstract

Leukemia stem cells (LSCs) are responsible for acute myeloid leukemia (AML) chemotherapy resistance and relapse. Here, we discovered that miR-34c-5p, a microRNA central to the senescence regulation network, was significantly down-regulated in AML (non-acute promyelocytic leukemia, non-APL) stem cells compared to that in normal hematopoietic stem cells (HSCs). The lower expression of miR-34c-5p in LSCs was closely correlated to the adverse prognosis and poor responses to therapy of AML patients. Increased miR-34c-5p expression induced LSCs senescence ex vivo, prevented leukemia development and promoted the eradication of LSCs in immune deficient mice. Mechanistically, forced expression of miR-34-5p induced senescence in LSCs through p53-p21Cip1-Cyclin-dependent kinase (CDK)/Cyclin or p53-independent CDK/Cyclin pathways. Exosome-mediated transfer of miR-34c-5p was one of the reasons for miR-34c-5p deficiency in LSCs. Furthermore, miR-34c-5p could increase its intracellular level by inhibiting exosome-mediated transfer via a positive feedback loop through RAB27B, a molecule that promotes exosome shedding. Overall, this study establishes a new strategy for treatment of AML patients by targeting LSCs to reinitiate senescence via increased miR-34c-5p expression. This miRNA-mediated tumor stem cell senescence could also have important therapeutic value in other malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  Google Scholar 

  2. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  Google Scholar 

  3. Campisi J, d’Adda, di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.

    Article  CAS  Google Scholar 

  4. Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32:5129–43.

    Article  CAS  Google Scholar 

  5. Wang Y, Liu L, Zhou D. Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiat Res. 2011;176:743–52.

    Article  CAS  Google Scholar 

  6. Wang Y, Kellner J, Liu L, Zhou D. Inhibition of p38 mitogen-activated protein kinase promotes ex vivo hematopoietic stem cell expansion. Stem Cells Dev. 2011;20:1143–52.

    Article  CAS  Google Scholar 

  7. Zou J, Zou P, Wang J, Li L, Wang Y. Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells. Ann Hemato. 2012;l91:813–23.

    Article  Google Scholar 

  8. Wang Y, Liu LL, Pazhanisamy SK, Li H, Meng A, Zhou DH. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med. 2010;48:348–56.

    Article  CAS  Google Scholar 

  9. Xiao Y, Zou P, Wang J, Song H, Zou J, Liu LL. Lower phosphorylation of p38 MAPK blocks the oxidative stress-induced senescence in myeloid leukemic CD34 (+) CD38 (−) cells. J Huazhong Univ Sci Technol Med Sci. 2012;32:328–33.

    Article  CAS  Google Scholar 

  10. Wajapeyee N, Wang SZ, Serra RW, Solomon PD, Nagarajan A, Zhu XC, et al. Senescence induction in human fibroblasts and hematopoietic progenitors by leukemogenic fusion-proteins. Blood. 2010;115:5057–60.

    Article  CAS  Google Scholar 

  11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  12. Schraml E, Grillari J. From cellular senescence to age-associated diseases: the miRNA connection. Longev Health. 2012;1:10.

    Article  Google Scholar 

  13. Hannon GJ, He XY, He L. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67:11099–101.

    Article  Google Scholar 

  14. Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res. 2008;68:3193–203.

    Article  CAS  Google Scholar 

  15. Nikitin AY, Corney DC, Flesken-Nikitin A, Godwin AK, Wang W. MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8.

    Article  Google Scholar 

  16. Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta. 2009;1792:341–52.

    Article  CAS  Google Scholar 

  17. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.

    Article  CAS  Google Scholar 

  18. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgc-deficient mice. J Clin Invest. 2011;121:384–95.

    Article  CAS  Google Scholar 

  19. de Leeuw DC, Denkers F, Olthof MC, Rutten AP, Pouwels W, Schuurhuis GJ, et al. Attenuation of microRNA-126 expression that drives CD34+38− stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res. 2014;74:2094–105.

    Article  Google Scholar 

  20. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C, et al. Anti-CD38 antibody mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.

    Article  CAS  Google Scholar 

  21. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  Google Scholar 

  22. Koeffler HP, Billing R, Lusis AJ, Sparkes R, Golde DW. An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1). Blood. 1980;56:265–73.

    CAS  PubMed  Google Scholar 

  23. Fuchs D, Daniel V, Sadeghi M, Opelz G, Naujokat C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun. 2010;394:1098–104.

    Article  CAS  Google Scholar 

  24. Zhang Y, Chen HX, Zhou SY, Wang SX, Zheng K, Xu DD, et al. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol Cancer. 2015;14:56.

    Article  Google Scholar 

  25. She M, Niu X, Chen X, Li J, Zhou M, He Y, et al. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett. 2012;318:173–9.

    Article  CAS  Google Scholar 

  26. Pfeffer SR. Two Rabs for exosome release. Nat Cell Biol. 2010;12:3–4.

    Article  CAS  Google Scholar 

  27. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  Google Scholar 

  28. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42:1530–6.

    CAS  PubMed  Google Scholar 

  29. Tashiro S, Asou H, Hamamoto K, Otsuji A, Kita K, Kamada N. Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood. 1991;77:2031–6.

    PubMed  Google Scholar 

  30. Peng DY, Song H, Liu LB. Resveratrol-downregulated phosphorylated liver kinase B1 is involved in senescence of acute myeloid leukemia stem cells. J Huazhong Univ Sci Technol Med Sci. 2015;35:485–6.

    Article  CAS  Google Scholar 

  31. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.

    Article  Google Scholar 

  32. Bautista D, Rodriguez LS, Franco MA, Angel J, Barreto A, et al. Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes. Cell Stress Chaperon. 2015;20:697–708.

    Article  CAS  Google Scholar 

  33. O’Donnell MR, Abboud CN, Altman J, Appelbaum FR, Arber DA, Attar E, et al. Acute myeloid leukemia. J Natl Compr Canc Netw. 2012;10:984–1021.

    Article  Google Scholar 

  34. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014;28:99–114.

    Article  CAS  Google Scholar 

  35. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–7.

    Article  CAS  Google Scholar 

  36. Bhatnagar S, Chertkow H, Schipper HM, Yuan Z, Shetty V, Jenkins S, et al. Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Front Mol Neurosci. 2014;7:2.

    Article  Google Scholar 

  37. Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, et al. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio. 2013;4:e000193.

    Article  Google Scholar 

  38. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;7:193–9.

    Article  Google Scholar 

  39. Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K, et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis. 2010;31:2066–73.

    Article  CAS  Google Scholar 

  40. Cai KM, Bao XL, Kong XH, Jinag W, Mao MR, Chu JS, et al. Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med. 2010;25:565–71.

    Article  CAS  Google Scholar 

  41. Hagman Z, Haflidadottir BS, Ansari M, Persson M, Bjartell A, Edsjö A, et al. The tumour suppressor miR-34c targets MET in prostate cancer cells. Br J Cancer. 2013;109:1271–8.

    Article  CAS  Google Scholar 

  42. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Sci USA. 2008;105:13556–61.

    Article  CAS  Google Scholar 

  43. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141:129–41.

    Article  CAS  Google Scholar 

  44. Zhou BR, Guo XF, Zhang JA, Xu Y, Li W, Wu D, et al. Elevated miR-34c-5p mediates dermal fibroblast senescence by ultraviolet irradiation. Int J Biol Sci. 2013;9:743–52.

    Article  Google Scholar 

  45. Braun J, Misiak D, Busch B, Krohn K, Hu S, Huttelmaier S. Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification). Nucleic Acids Res. 2014;42:e66.

    Article  CAS  Google Scholar 

  46. Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D, et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov. 2012;2:236–47.

    Article  CAS  Google Scholar 

  47. Zheng Y, Zhang H, Wang Y, Li X, Lu P, Dong F, et al. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia. 2016;30:2373–84.

    Article  CAS  Google Scholar 

  48. Cheng T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene. 2004;23:7256–66.

    Article  CAS  Google Scholar 

  49. Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol. 2014;6:214–30.

    Article  CAS  Google Scholar 

  50. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.

    Article  CAS  Google Scholar 

  51. Miranda KC, Huynh T, Tay T, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of microRNA-target sites and their corresponding RNA/RNA complexes. Cell. 2006;126:1203–17.

    Article  CAS  Google Scholar 

  52. Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, et al. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer. 2010;127:2768–76.

    Article  CAS  Google Scholar 

  53. Yang DQ, Zhou JD, Wang YX, Deng ZQ, Yang J, Yao DM, et al. Low miR-34c expression is associated with poor outcome in de novo acute myeloid leukemia. Int J Lab Hematol. 2017;39:42–50.

    Article  Google Scholar 

  54. Ablain J, Rice K, Soilihi H, de Reynies A, Minucci S, deThe H. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat Med. 2014;20:167–74.

    Article  CAS  Google Scholar 

  55. Hornick NI, Doron B, Abdelhamed S, Huan J, Harrington CA, Shen R, et al. AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci Signal. 2016;9:ra88.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Natural Science Foundation of China (Nos. 81370660, 81770192, 81300412).

Author contributions

DP performed experiments, analyzed the data, and wrote the manuscript; HW, XM, and YC gathered biological samples and provided great help with mouse experiments; YL, YX, and LL conceived the study, analyzed the data and wrote the manuscript; LL and ZH provided critical evaluation of experimental data and the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Luo, Yin Xiao or Lingbo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D., Wang, H., Li, L. et al. miR-34c-5p promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding. Leukemia 32, 1180–1188 (2018). https://doi.org/10.1038/s41375-018-0015-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0015-2

This article is cited by

Search

Quick links