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p21-activated kinase 2 binds to transcription factor SOX2 and
up-regulates DEK to promote the progression of lung
squamous cell carcinoma
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Lung squamous cell carcinoma (LSCC) is a prevalent and progressive subtype of lung cancer. This study aimed to substantiate the
regulatory effect of the PAK2/SOX2/DEK axis on the LSCC development. LSCC tissues (n= 83) and adjacent normal tissues were
collected and SOX2 expression was determined by qRT-PCR and Western blotting. Correlation between SOX2 expression and
the prognosis of LSCC patients was then explored utilizing Kaplan–Meier analysis. Co-immunoprecipitation and glutathione-S-
transferase pull-down assays were conducted to validate the binding of SOX2 to DEK. Gain- and loss- of function assays were then
performed on LSCC cells, with CCK-8 and Transwell assays applied to detect the malignant behaviors of cells. A mouse xenograft
model of LSCC was further established for in vivo validation. The expression levels of SOX2, PAK2 and DEK were up-regulated in
LSCC tissues and cells. SOX2 overexpression was correlated with poor prognosis of LSCC patients. Knockdown of SOX2 weakened
the viability and the migratory and invasive potential of LSCC cells. Further, PAK2 directly interacted with SOX2. PAK2
overexpression accelerated the malignant phenotypes of LSCC cells through interplay with SOX2. Moreover, SOX2 activated the
expression of DEK, and silencing DEK attenuated the malignant behaviors of LSCC cells. In conclusion, PAK2 could bind to the
transcription factor SOX2 and thus activate the expression of DEK, thereby driving the malignant phenotypes of LSCC cells both
in vivo and in vitro.
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INTRODUCTION
Lung cancer is one of the leading causes of cancer-related mortality
worldwide1. Lung cancer is generally divided into two types, small
cell lung carcinoma and non-small cell lung carcinoma (NSCLC), and
NSCLC can further be classified into large cell lung carcinoma, lung
squamous cell carcinoma (LSCC), and lung adenocarcinoma2. Among
the three subtypes, LSCC accounts for about 30% of NSCLC and is
characterized by poor survival rates and frequent recurrence3. In
spite of considerable efforts to develop LSCC treatment, several
available therapeutic regimens, including a newly developed
targeted therapy, fail to achieve satisfactory therapeutic results,
which may be attributed to the complicated genomic patterns in
LSCC4. Therefore, the identification of novel targets is urgent for the
development of LSCC treatment.
SOX2, a transcription factor that acts as a regulator of

pluripotent stem cells, has been identified as a contributor to
the development and maintenance of squamous epithelia5. The
amplification of SOX2 as well as its oncogenicity has been
reported in a spectrum of squamous cell carcinomas (SCCs)6,7.
More importantly, previous studies have revealed the involvement
of SOX2 in LSCC8. However, the molecular mechanism by which
SOX2 participates in LSCC progression remains to be established.
Our bioinformatics analysis initially identified p21-activated kinase

2 (PAK2) as a SOX2-interacting protein, and, notably, the
interaction between SOX2 and PAK2 was revealed in a previous
systematic analysis9. Interestingly, a recent case has correlated
PAK overexpression with oral SCC10, whereas the potential role of
PAK2 in LSCC remains unclear. This study therefore aimed to
explore the potential effect of PAK2 on LSCC based on its
interaction with SOX2.
Apart from the interaction between SOX2 and PAK2, it has also

been suggested that SOX2-mediated up-regulation of defective
kernel (DEK) contributed to the regulatory effect of SOX2 in LSCC5.
DEK, a typical oncogene, is involved in the progression of various
cancers11. Moreover the expression of DEK was up-regulated in
NSCLC, and DEK overexpression was involved in the pathogenesis
of NSCLC, stimulating the proliferation and invasion of NSCLC
cells12–14. In this study, we hypothesize that PAK2 induces the
occurrence and development of LSCC by positively interacting
with SOX2 and up-regulating the expression of DEK.

METHODS AND MATERIALS
Bioinformatics analysis
LSCC-related genes were retrieved, with the key word “lung squamous cell
carcinoma”, from GeneCards (Relevance score: top 300 genes), DisGeNET
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(screen criteria: score ≥ 0.1) and Phenolyzer databases, respectively, which
were then intersected using the jvenn tool to identify candidate genes.
Protein-protein interaction (PPI) analysis was conducted through a
bioinformatics tool STRING (confidence 0.4) to screen key targets. The
differential expression of candidate genes between LSCC and adjacent
normal samples in TCGA database was tested using the Mann–Whitney U
method, with the format of transcripts per million reads, followed by log2
conversion. R (version 3.6.3) “ggplot2” package was used to draw boxplots.
The Kaplan–Meier survival curve of HRAS and SOX2 expression in lung
cancer samples was retrieved from the KMplot database, and the patients
were divided into two groups according to the median of gene expression,
with p < 0.01 as the threshold.
Subsequently, genes interacting with SOX2 were predicted USING

GeneCards and BioGRID databases, and the key upstream PAK2 was
identified through PPI network analysis. The co-expression analysis of PAK2
and SOX2 in TCGA database was conducted utilizing the starBase tool.
Moreover, the binding sites between them were predicted by the JASPAR
database (Organisms: homo sapiens).

Ethics approval
The study was conducted in accordance with the Declaration of Helsinki
and approved by the Ethics Committee of the First Affiliated Hospital of
Nanchang University. Detailed study aims as well as planned procedures
were explained to all patients, who were subsequently provided with
signed informed consent documentation. Animal experiments were
approved by the Animal Care and Use Committee of the First Affiliated
Hospital of Nanchang University and performed in accordance with Guide
for the Care and Use of Laboratory Animals published by the US National
Institutes of Health.

Tissue collection and cell culture
LSCC tissues and adjacent normal tissues were collected from a total of 83
patients with LSCC who underwent initial surgery at the First Affiliated
Hospital of Nanchang University from January 2015 to March 2017. These
patients had never undergone preoperative chemotherapy or radiotherapy
and received standard treatment after surgery in accordance with the 2004
National Comprehensive Cancer Network (NCCN) clinical practice guide-
lines in oncology: Non-Small Cell Lung Cancer. If the cancer recurred,
subsequent treatment method was determined by the doctor in charged.
All cases were classified following the World Health Organization criteria
for LSCC.
Four LSCC cell lines (LTEP-S, SK-MES-1, NCI-H2170, NCI-H520), a normal

lung epithelial cell line BEAS-2B and the normal human embryonic kidney
HEK-293T cell line were purchased from the National Infrastructure of Cell
Line Resource. BEAS-2B and LTEP-S cells were cultured in high-glucose
DMEM (GIBCO, Grand Island, NY) containing 10% fetal bovine serum (FBS,
GIBCO). NCI-H2170 and NCI-H520 cells were cultured in RPMI 1640
medium (GIBCO) containing 10% FBS. HEK-293T and SK-MES-1 cells were
cultured in 10% FBS-containing MEM medium (GIBCO). All cells were
cultured in a 5% CO2 incubator at 37 °C and 95% saturated humidity.

Immunohistochemistry (IHC)
The sections were immersed successively in xylene-absolute ethanol-95%
ethanol-70% ethanol (5 min per time), followed by heating at 95 °C with
0.01 M sodium citrate buffer. The sections were then blocked with normal
goat serum blocking solution at room temperature. Subsequently, the
sections were incubated with corresponding primary antibodies (anti-
SOX2, ab97959, 1:100; anti-PAK2, ab76293, 1:200; anti-DEK, ab249362,
1:100; Abcam, Cambridge, UK). Then, the sections were incubated with
secondary antibody for 1 h at room temperature. After color development
in DAB reagent, sections were treated with hematoxylin counterstaining
for microscopic observation.

Cell transfection
LSCC cell lines NCI-H2170 and NCI-H520 were classified into 15 groups and
subjected to different treatment with: short hairpin RNA (shRNA, sh)-
negative control (NC), sh-SOX2-1, sh-SOX2-2, sh-SOX2-3, overexpression
(oe)-NC, oe-SOX2, oe-PAK2+ sh-NC, oe-PAK2+ sh-SOX2, sh-PAK2, sh-DEK-
1, sh-DEK-2, sh-DEK-3, sh-NC+ oe-NC, sh-SOX2+ oe-NC, and sh-SOX2+
oe-DEK. The overexpression vector was pcDNA3.1, and the RNAi vector is
pRNAT-U6.1/neo, both designed and constructed by GenePharma
(Shanghai, China). The transfection was performed following the protocols
of Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Cells were then

incubated with G418 (400 ug/ml) to screen stable cells silencing DEK.
Two weeks later, cells were incubated with G418 (200 ug/ml) again to
screen stably transfected NCI-H2170 and NCI-H520 cells for two-month
culture.

RNA extraction and quantitative reverse-transcription
polymerase chain reaction (qRT-PCR)
Total RNA was extracted by TRIzol reagent (15596026, Invitrogen) from
tissues. Following the protocols of PrimeScript RT reagent Kit (RR047A,
Takara, Shiga, Japan), the RNA was reverse-transcribed into cDNA. Then,
SYBR Premix EX Taq kit (RR420A, Takara) and the ABI7500 PCR system
(ABI, Foster City, CA) were used for qRT-PCR determination. Involved
primers were synthesized by Shanghai Sangon Biotech (Shanghai,
China), as listed in Supplementary Table 1. Each group was repeated
in three wells. Further, the relative quantification method (2−△△CT

method) was used to calculate the relative transcription level (normal-
ized to β-actin).

Western blot assay
Total protein was extracted from cells utilizing RIPA lysis buffer
containing phenylmethylsulphonyl fluoride, followed by determination
of protein concentration using BCA detection kit (70-PQ0012, Multi
Sciences, Hangzhou, Zhejiang, China). Then, the protein (50 µg) was
separated by SDS-PAGE, electro-transferred to PVDF membrane, and
blocked with 5% skim milk powder at room temperature for 1 h.
Afterwards, the membrane was incubated overnight at 4 °C with diluted
rabbit primary antibodies, including anti-DEK (ab74975, 1:500, Abcam),
anti-Ki67 (ab16667, 1:1000, Abcam), anti-SOX2 (ab97959, 1:1000,
Abcam), anti-MMP-9 (ab137867, 1:1000, Abcam), anti-E-cadherin
(ab15148, 1:500, Abcam), anti-N-cadherin (ab18203, 1:1000, Abcam),
and anti-β-actin (ab227387, 1:5000, Abcam). After washing, the
membrane was further incubated for 1 h with horseradish peroxidase
(HRP)-labeled IgG secondary antibody (ab97051, 1:2000, Abcam). The
enhanced chemiluminescence detection kit (Thermo Fisher Scientific,
San Jose, PA) was then utilized to visualize the protein bands. Further,
the ECL fluorescence detection kit (BB-3501, Amersham, Little Chalfont,
UK) was utilized to visualize the blot, and images were photographed
with Bio-Rad image analysis system (BIO-RAD, Hercules, CA). The gray
level of protein bands was quantified using Quantity One v4.6.2 software
and normalized to β-actin.

Coimmunoprecipitation (Co-IP) assay
Cells were lysed with RIPA buffer (Thermo Fisher Scientific), sonicated for
30min, and centrifuged at 13000 g for 30 min at 4 °C. The specific antibody
and the supernatant were mixed overnight at 4 °C, followed by 4 h
incubation with Pierce protein A/G Magnetic Beads (Thermo, 88803). Then,
the beads were collected by centrifugation, mixed with loading buffer, and
examined with SDS-PAGE and Western blot.

Glutathione-S-transferase (GST) pull-down assay
The CDS sequence of PAK2 was obtained from the NCBI Reference
Sequence: NM_002577.4, constructed into Pgex-4T-3 plasmids by Beijing
ABXBio to form a GST-PAK2 recombinant expression vector, and
transformed into E. coli Rosetta. After positive cloning, prokaryotic
expression was induced by IPTG, and the GST-PAK2 protein was purified
by glutathione agarose affinity chromatography column. The purified GST-
PAK2 protein and GST-labeled protein were then mixed with GST-Beads
(Immobilized Glutathione) in an EP tube and rotated in a chromatography
cabinet at 4 °C for 1 h. The cells transfected with plasmids overexpressing
SOX2 were collected and fully lysed, and 20% of the lysate was taken as
the input (positive control). The remaining lysate was then added to the EP
tube and rotated in the chromatography cabinet at 4 °C for 4 h. Then, GST-
Beads were washed and analyzed with SOX2 antibody in Western blot.
Further, before washing, 2% volume of the mixture was taken for Western
blot analysis.

Chromatin immunoprecipitation (ChIP) assay
The NCI-H2170 and NCI-H520 cells of each group were fixed with
formaldehyde for 10min to produce DNA-protein crosslinks and lysed with
ultrasonic disruptor (each sonicate for 10 s, interval of 10 s, and 15 cycles)
to break the chromatin into fragments (200–500 bp). Then, 10% of the cell
lysate was set as the Input. The left lysate was centrifuged at 4 °C, 12000 g
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for 10 min to collect the supernatant, which were then divided into two
tubes and respectively incubated overnight at 4 °C with the NC rabbits IgG
(ab109489, 1:300, Abcam) and anti-SOX2 antibodies (Upstate Biotech, Lake
Placid, NY). Afterwards, the DNA-protein complexes were precipitated with
Pierce protein A/G Magnetic Beads (88803, Thermo Fisher Scientific), de-
crosslinked, extracted with phenol/chloroform. Purified DNA fragments
were measured with qRT-PCR assay.
After PAK2 knockdown, the sample containing purified DNA fragments

was collected for ChIP assay (the same procedures as above) with sample
of the sh-NC group as the control. Primers used to detect the enrichment

of DEK promoter fragments was: Forward 5′-GATCTTTTTCCTTTCGGTG-3′
and Reverse 5′-TGCGTGTTTATTGTTTCCA-3′.

Immunofluorescence microscopy
Transfected NCI-H2170 and NCI-H520 cells were fixed with 4% poly-
methylene formaldehyde, 15min permeabilization with 0.3% Triton-X100
and blocking with 5% BSA, cells were then incubated overnight with anti-
SOX2 antibodies (1: 400; Cell Signaling Tech., Danvers, MA) at 4 °C, followed
by incubation with the anti-rabbit immunoglobulin G secondary antibody
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that had been labeled by Alexa Fluor 488 (Beyotime, Beijing, China).
Afterwards, cells were stained with DAPI (Sigma, St. Louis, MO) and then
subjected to immunofluorescence microscopic observation using a CFD
laser scanning microscope (DFC420C, LEICA, Wetzlar, Germany).

Phosphorylation assay
Cells were treated with lysis supplemented with protease/phosphatase
inhibitors (Sigma), and dephosphorylated samples were then incubated for
1 h with the alkaline phosphatase (FastAP, Thermo Fisher Scientific),
followed by separation of the protein utilizing Mn2+-Phos-TagTM SDS-PAGE
as previously described15.

Cell counting kit-8 (CCK-8) assay
Cell proliferation was measured by Cell Counting Kit-8 kit (Dojindo,
Kumamoto, Japan). Briefly, NCI-H2170 and NCI-H520 cells were seeded into
a 96-well plate. Then, 10 μl of CCK-8 reagent was added into each well 24,
48, 72, and 96 h after transfection for 1 h incubation. Then, the absorbance
at 450 nm was evaluated utilizing a microplate reader.

Transwell assays
Migration assay: LSCC cell suspension was added to the upper chamber of
Transwell system and pre-chilled DMEM containing 10% FBS to the lower
chamber. The chambers were incubated at 5% CO2 and 37 °C for 24 h.
Then, cells in the lower chamber were fixed with methanol for 30min,
stained with 0.1% crystal violet reagent for 20min, inverted, and dried. Five
fields of view were randomly selected under an inverted microscope to
count the number of cells penetrating the membrane.
Invasion assay: Diluted matrigel was added to the polycarbonate

membrane of upper chamber. The following procedures were the same as
the migration assay.

In vivo experiments
A total of 60 twenty-four-week-old BALB/C nude mice were purchased
from the animal center of the First Affiliated Hospital of Nanchang
University and randomly divided into six groups (ten mice/group). NCI-
H2170 or NCI-H520 cells treated with sh-DEK-1, sh-DEK-2, or sh-NC were
subcutaneously injected into the thighs of mice of the corresponding
group. Then, the size of xenografted tumors was examined every week,
and the volume was calculated following the formula: (a*b2)/2 (a: the
longest diameter of the tumor; b: the shortest diameter of the tumor) and
recorded. Six weeks after the injection, the nude mice were euthanized.
The tumors were removed and weighed.

Statistical analysis
Data in this study was processed utilizing SPSS v.22.0 (SPSS Inc., Chicago,
IL) software. Measurement data were summarized as mean ± standard
deviation. Paired t-test was applied for the comparison of LSCC tissue and
adjacent normal tissue, and unpaired t-test was applied for comparison
between data of two groups. One-way analysis of variance (ANOVA) with
Tukey’s post-hoc test was performed for comparison among data of
multiple groups. The comparison of tumor volume between groups was
performed by two-way ANOVA or repeated measurement ANOVA with
Tukey’s post-hoc test. Pearson correlation analysis was adopted for the
expression correlation of various factors in LSCC tissues. Kaplan–Meier was
used to calculate the overall survival (OS) curve of patients with LSCC and

log-rank to analyze the survival differences among patients. Cox regression
analysis was applied for the prognosis-related factors in LSCC. Moreover, p
< 0.05 indicated statistically significant difference.

RESULTS
SOX2 is highly expressed in LSCC tissues and associated with
poor prognosis of LSCC
LSCC-related genes were retrieved from GeneCards (the top 300),
DisGeNET (those with a score≥ 0.1), and Phenolyzer databases, and
the results of were then intersected to obtain 19 candidate genes
(Fig. 1A). The expression of the 19 genes in LSCC (n= 502) and
normal samples (n= 49) in TCGA database was then analyzed, and
HRAS and SOX2 were highly expressed in LSCC tumor samples and
the p value was the lowest (Fig. 1B). Results of the PPI network
analysis further displayed that HRAS and SOX2 were at the core
position of the network (Fig. 1C). The KMplot data indicated that only
SOX2 was associated with poor prognosis of lung cancer patients,
and lower survival rate was seen in lung cancer patients with high
SOX2 expression (Fig. 1D). SOX2 was selected as the candidate gene.
In order to verify these results, we examined SOX2 expression in

LSCC tissues and adjacent normal tissues of 83 LSCC patients by
qRT-PCR. The expression of SOX2 was elevated in LSCC tissues
compared to adjacent tissues (Fig. 1E), and LSCC of higher stage
was associated with higher expression of SOX2 (Fig. 1F). We
further evaluated the relationship between SOX2 expression and
clinicopathological factors of the 83 patients (Supplementary
Table 2), and a positive correlation between SOX2 expression and
TNM stage of LSCC (also lymph node metastasis) was revealed.
SOX2 expression was not correlated with other clinicopathological
factors. Moreover, Kaplan–Meier curve analysis indicated that
LSCC patients with higher SOX2 expression tended to have shorter
OS and disease-free survival (DFS) (Fig. 1G).
IHC results also validated the up-regulated expression of SOX2 in

representative LSCC tissue relative to adjacent normal tissues (Fig. 1H
and Supplementary Fig. 1A). Moreover, through univariate analysis
we further revealed that SOX2 expression, T staging, TNM stage, and
lymph node metastasis were significantly related to OS, while
multivariate analysis identified them as independent prognostic
factors for LSCC patients (Supplementary Table 3). Further, we
determined SOX2 expression in four LSCC cell lines (LTEP-S, SK-MES-
1, NCI-H2170, and NCI-H520) and a normal lung epithelial cell line
(BEAS-2B) by qRT-PCR and Western blot assays (Fig. 1I and
Supplementary Fig. 2A). The results showed that SOX2 expression
in LSCC cells was augmented versus that in BEAS-2B cells, and the
highest expression of SOX2 was identified in NCI-H2170 and NCI-
H520 cells, which were thus selected for subsequent experiments.

SOX2 knockdown represses the proliferative, migratory and
invasive potential of LSCC cells
After identifying the up-regulated expression of SOX2 in LSCC
tissues and cells, we further explored the effect of SOX2

Fig. 1 SOX2 expression is positively corelated with prognosis of LSCC patients. A LSCC-related genes retrieved from GeneCards (https://
www.genecards.org/), DisGeNET (http://www.disgenet.org/search), and Phenolyzer (http://phenolyzer.wglab.org/) databases; B A box plot of
the expression of 19 candidate genes in LSCC samples (n= 502) and normal samples (n= 49) in TCGA database. C PPI network of LSCC-related
genes; the color of the node changing from blue to yellow indicates the Degree value of genes from high to low. D Kaplan–Meier curve
analysis of the correlation of SOX2 with the prognosis of lung cancer patients in the KMplot database; red line indicates SOX2 high expression
and black line indicates SOX2 low expression. The patients were grouped based on median expression. E qRT-PCR to measure the expression
of SOX2 in LSCC tissues and adjacent normal tissues (n= 83), *p < 0.05 versus adjacent normal tissues; F qRT-PCR to determine SOX2
expression in LSCC tissues of different TNM stage (29 in Stage I, 32 in Stage II, and 22 in Stage III), *p < 0.05 versus Stage I tissues, #p < 0.05
versus Stage II tissues; G Kaplan–Meier curve analysis of the relationship between SOX2 expression and the OS and DFS of LSCC patients, and
Log-rank method for differential analysis of survival rate; H IHC assay to determine the expression of SOX2 in representative LSCC tissues and
adjacent normal tissues; I qRT-PCR and Western blot assay to measure the expression of SOX2 in four LSCC cell lines and a normal lung
epithelial cell line. *p < 0.05 versus BEAS-2B cells. Measurement data were summarized as mean ± standard deviation. Paired t-test was applied
for comparison between LSCC tissues and adjacent normal tissues (for D, E, H). One-way ANOVA with Tukey’s post hoc test was adopted for
comparison of data of multiple groups (for F, I). Cell experiment was repeated three times.
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dysregulation on LSCC cells. Constructing three shRNAs targeting
SOX2 and transfecting them into NCI-H2170 and NCI-H520 cells,
we then identified sh-SOX2-1 and sh-SOX2-2 as the two sh-RNAs
with the best or second best SOX2-silencing efficiency utilizing
qRT-PCR and Western blot (Fig. 2A and Supplementary Fig. 2B).
Herein, sh-SOX2-1 and sh-SOX2-2 were selected for subsequent
transfection of LSCC cells (NCI-H2170 and NCI-H520).
Following successful transfection, we adopted CCK-8 assay to

measure the viability of transfected NCI-H2170 and NCI-H520 cells
(Fig. 2B). According to the results, SOX2 knockdown, induced by
either sh-SOX2-1 or sh-SOX2-2, obviously repress the viability of
LSCC cells. Then, through Transwell assay we substantiated that
SOX2 knockdown could suppress the migratory and invasive
ability of LSCC cells (Fig. 2C and Supplementary Fig. 3A). Further,

we determined the levels of a proliferation-related protein Ki67
and migration-related proteins (MMP-9, E-cadherin, and N-
cadherin) by Western blot (Fig. 2D, Supplementary Fig. 2C), and
the results showed that silencing SOX2 attenuated cell invasion
and migration in LSCC cells. Taken together, SOX2 knockdown was
able to repress the viability and the migratory and invasive
potential of LSCC cells.

SOX2 directly interacts with PAK2
The aforementioned experiments have substantiated the regulatory
effect of SOX2 on the biological activities of LSCC cells, whereas the
underlying mechanisms remained unclear. In this sense, we
searched SOX2-interacting proteins through GeneCards and BioGRID
databases (screening score ≥ 0.9) and obtained 12 proteins (Fig. 3A).
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Fig. 2 SOX2 knockdown represses the biological activities of LSCC cells. A qRT-PCR and Western blot assay to measure the silencing
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PPI network analysis was then performed on these proteins, among
which PAK2, PAK1, OXSM, DDAH2, and PRTEDC1 were highlighted
for their close interaction (Fig. 3B). Moreover, GEPI2 analysis
indicated that PAK2 expression was up-regulated in LSCC tissues
from TCGA database (Fig. 3C). Further, starBase analysis revealed
that PAK2 and SOX2 expression was positively correlated in LSCC
tissues from TCGA database (Fig. 3D).
To further verify their interaction, we adopted Pearson correlation

analysis on the expression of PAK2 and SOX2 in 84 LSCC cases and

identified the positive correlation between the expression of PAK2
and SOX2 in LSCC (Fig. 3E). In addition, IHC measurement revealed
that PAK2 was highly expressed in LSCC tissues (Fig. 3F and
Supplementary Fig. 1B). Moreover, we transferred exogenous PAK2
and SOX2 into HEK293T cells and performed Co-IP assay. The results
indicated that PAK2 interacted with SOX2 (Fig. 3G). Next, we
performed Co-IP assay of PAK2 and SOX2 in NCI-H2170 and NCI-
H520 cells and found that endogenous PAK2 also interacts with
SOX2 (Fig. 3H). Subsequently, GST pull-down assay (Fig. 3I)
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substantiated the direct interaction between PAK2 and SOX2.
Moreover, silencing PAK2 led to reduced levels of phosphorylated
SOX2 in NCI-H2170 and NCI-H520 cells (Fig. 3J). Consistently,
immunofluorescence results showed that SOX2 expression was
attenuated in response to PAK2 knockdown and was up-regulated
in response to PAK2 overexpression (Fig. 3K). Taken together, these
results indicated that SOX2 interacted with PAK2.

SOX2 participates in the stimulating effect of PAK2 on
malignant phenotypes of LSCC cells
Following identification of the direct interaction between PAK2 and
SOX2, we then explored the role of such interaction in the biological
characteristics of LSCC cells. With this purpose, we established NCI-
H2170 and NCI-H520 cell models of PAK2 overexpression as well as

PAK2 overexpression + SOX2 knockdown, and then validated the
models through qRT-PCR and Western blot assays (Fig. 4A and
Supplementary Fig. 2D). Next, results of CCK-8 and Transwell assays
indicated augmented proliferation, migration and invasion of LSCC
cells in the presence of PAK2 overexpression alone (shown in the oe-
PAK2+ sh-NC group versus the oe-NC+ sh-NC group), whereas its
combination with SOX2 knockdown resulted in the opposite results,
as reflected by the reduced functions in the oe-PAK2+ sh-SOX2
group relative to the oe-PAK2+ sh-NC group (Fig. 4B, C and
Supplementary Fig. 3B). Further, the expression levels of a
proliferation-related protein Ki67 and migration-related proteins
(MMP-9, E-cadherin, and N-cadherin) in LSCC cells were determined
by Western blot. According to the results, PAK2 overexpression
resulted in up-regulated levels of Ki67, MMP-9, and N-cadherin as
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well as down-regulated level of E-cadherin, whereas the combina-
tion of PAK2 overexpression and SOX2 knockdown resulted in the
opposite (Fig. 4D and Supplementary Fig. 2E). In summary, PAK2
could stimulate the proliferative, migratory, and invasive abilities of
LSCC cells only in the presence of SOX.

PAK2 and SOX2 co-regulates the downstream DEK gene
Recent studies show that SOX2 had a role to confer in SCC via up-
regulating the expression of DEK, ETV4, HRAS, SRSF2, JUN, YAP1,
SOX2OT, CDH1 and other genes5,16–18. Herein, we conducted a
quantitative analysis on these genes. The results indicated that
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DEK presented the most obvious up-regulation of expression in
the LSCC cells (LTEP-S, SK-MES-1, NCI-H2170, NCI-H520) versus the
normal lung epithelial cell line (BEAS-2B) (Fig. 5A). IHC results also
showed the elevated expression of DEK in LSCC tissues (Fig. 5B,
Supplementary Fig. 1C). Then the JASPAR database was utilized to
predict the binding sites of SOX2 and DEK (Fig. 5C).
Furthermore, we conducted ChIP assays in NCI-H2170 and NCI-

H520 cells and identified that SOX2 could bind to the promoter
region of DEK (Fig. 5D). According to the published SOX2 genomic
binding map19,20, we selected the SOX1 promoter as a NC and
examined the binding of SOX2 to SOX1 promoter by ChIP assay in
NCI-H2170 and NCI-H520 cells, respectively. The results displayed
that the amount of SOX1 promoter fragments enriched by the
SOX2 antibody group has no obvious difference with that of SOX1
promoter fragments enriched by the IgG antibody (Fig. 5D),
indicating that SOX2 cannot bind to SOX1 promoter region. Next,
qRT-PCR results showed that SOX2 overexpression could lead to
elevated expression of DEK in both NCI-H2170 and NCI-H520 cells
(Fig. 5E). Subsequently, through qRT-PCR we measured DEK
expression in NCI-H2170 and NCI-H520 cell model of PAK2
overexpression and PAK2 overexpression + SOX2 knockdown
(Fig. 5E). According to the results, the expression of DEK was
elevated in response to PAK2 overexpression alone, but decreased
in response to the combination of PAK2 overexpression and SOX2
knockdown.
Further, we treated NCI-H2170 and NCI-H520 cells with sh-PAK2,

and the expression of PAK2 in these cells was successfully knocked
down, as shown by qRT-PCR and Western blot measurement;
PAK2 knockdown was then observed to result in reduced
expression of DEK (Fig. 5F and Supplementary Fig. 2F). We then
investigated the binding of SOX2 and DEK promoter region by
ChIP assays. As a result, the DEK promoter region fragments
enriched by SOX2 antibodies were obviously reduced in response
to PAK2 knockdown and increased in response to PAK2 over-
expression (Fig. 5G), indicating that PAK2 knockdown repressed
SOX2 binding to the promoter region of DEK. Then, through
GEPIA2 analysis we further validated that DEK expression was
positively correlated with SOX2 and PAK2 expression in LSCC
tissues from the TCGA database (Fig. 5H, I). Taken together, PAK2
and SOX2 could co-regulate DEK.

DEK knockdown represses the malignant phenotypes of LSCC
cells
The previous experiments revealed the effect of SOX2 and PAK2
on the biological activities of LSCC cells and identified DEK as the
target gene of SOX2 and PAK2. We speculated that DEK might also
have regulatory effect on LSCC cells. To validate this hypothesis,
we designed and constructed three shRNAs targeting DEK and
transfected them into NCI-H2170 and NCI-H520 cells. Then,
through qRT-PCR and Western blot, we identified the sh-DEK-1
and sh-DEK-2 with the best and second-best silencing efficiency
(Fig. 6A and Supplementary Fig. 2G) and selected them for
transfection of LSCC cells (NCI-H2170 and NCI-H520 cells).
The viability and the migratory and invasive potential of cells

transfected with sh-DEK-1 or sh-DEK-2 were evaluated with CCK-8

and Transwell assays (Fig. 6B, C), which revealed that DEK
knockdown could obviously repress malignant phenotypes of
LSCC cells. Moreover, we adopted Western blot to measure
expression levels of a proliferation-related protein Ki67 and
migration-related proteins (MMP-9, E-cadherin, and N-cadherin)
in NCI-H2170 and NCI-H520 cells, and the results revealed that
silencing DEK repressed the expression of Ki67, MMP-9 and
N-cadherin and promote the expression of anti-migratory E-
cadherin (Fig. 6D and Supplementary Fig. 2H). In addition, our data
demonstrate that SOX2 knockdown reduced cell viability,
attenuated cell migration and invasion, down-regulated the
expression of Ki67, MMP-9 and N-cadherin, and up-regulated
E-cadherin expression in NCI-H2170 and NCI-H520 cells;
while additional DEK overexpression could reverse the aforemen-
tioned effects of SOX2 knockdown alone (Supplementary Fig. 4A,
B, C).
In order to further explore the effect of DEK on the

tumorigenesis of LSCC in vivo, we established NCI-H2170 and
NCI-H520 cells silencing DEK and injected them into nude mice.
Then, we determined the expression of DEK by qRT-PCR and
Western blot, the results of which identified that the expression of
DEK in xenografted tumors was decreased in response to sh-DEK
treatment (Fig. 6E). Further, as shown in Supplementary Fig. 5 and
Fig. 6F, G, DEK knockdown resulted in reduced volume and weight
of xenografted tumors. Moreover, Western blot analysis in the
xenografted tumor tissues indicated that the levels of Ki67, MMP-9
and N-cadherin were down-regulated and the level of E-cadherin
was up-regulated in the presence of DEK knockdown (Fig. 6H and
Supplementary Fig. 2I). In summary, DEK knockdown could repress
the viability and the migratory, and invasive potential of LSCC cells
both in vitro and in vivo.

DISCUSSION
In this study, we show that PAK2 contributes to the development
of LSCC by positively interacting with SOX2 and up-regulating the
expression of oncogenic DEK (Fig. 7).
SOX2 is a transcription factor modulating pluripotent stem cells,

and the amplification of SOX2 has been reported in a spectrum of
SCCs including esophageal SCC21 and head and neck cutaneous
SCC22. More importantly, accumulating data have revealed that
dysregulated SOX2 was involved in the formation of LSCC23,24. In
agreement with these reports, our bioinformatic analysis identified
the overexpression of SOX2 in LSCC tissues and correlated it with
the poor prognosis of LSCC. Further, through a series of functional
assays we substantiated that SOX2 knockdown was able to repress
the viability and the migratory and invasive potential of LSCC cells.
Such regulatory effects on cell functions, as a previous study has
delineated, may attribute to the role of SOX2 as a driver gene for
the recurrent 3q26.33 (one of the most frequently amplified
genomic sites in SCC) amplifications in LSCC25. In this study, we
further explored the downstream molecular mechanism and
identified PAK2 as a SOX2-interacting gene. This finding
corroborates a previous research where PAK2 was indicated to
interact with SOX29. Furthermore, our data revealed that PAK2

Fig. 5 The interaction of PAK2 and SOX2 regulates the downstream DEK gene. A qRT-PCR to determine the expression of DEK in human
LSCC cells and normal lung epithelial cells, *p < 0.05 versus BEAS-2B cells; B IHC assay to determine the expression of DEK in LSCC tissues and
adjacent normal tissues; *p < 0.05 versus adjacent normal tissues; C Binding sites of SOX2 and DEK predicted by the JASPAR database (http://
jaspar.genereg.net/); D ChIP assay to examine the binding of SOX2 to DEK and SOX1 promoter region, *p < 0.05 versus IgG antibody group;
E qRT-PCR to determine the expression of DEK in cells, *p < 0.05 versus the oe-NC or oe-NC+ sh-NC group; F qRT-PCR and Western blot to
measure the silencing efficiency of sh-PAK2 and DEK expression upon sh-PAK2 treatment; *p < 0.05 versus the sh-NC group; G ChIP assay to
examine the binding of SOX2 and DEK promoter region after PAK2 knockdown, *p < 0.05 versus the sh-NC or oe-NC group; H Co-expression
analysis of SOX2 and DEK in LSCC samples in TCGA database; I Co-expression analysis of PAK2 and DEK in LSCC samples in TCGA database.
Measurement data were summarized as mean ± standard deviation. One-way ANOVA with Tukey’s post hoc test was adopted for comparison
among data of multiple groups (for A, E). Paired t-test was used for comparison between LSCC tissues and adjacent normal tissues (for B),
while unpaired t-test was used for comparison between data of two groups (for D, F, G). Cell experiment was repeated three times.
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directly bound to SOX2. Herein, it was reasonable to hypothesize
that PAK2 had a role to confer in the tumorigenesis of LSCC.
The transcription factor SOX2 is involved in a variety of

biological processes, including maintenance of embryonic and
adult stem cells, bronchial and lung differentiation, tumorigenesis

and cell survival26–30. Recent data have documented that SOX2
has an important role to play in LUSC tumor stem cell
phenotypes15. Indeed, amplification of SOX2, consistent with its
overexpression, is a common genomic alteration in LUSC of TCGA
cohort31. Corroborating findings are identified in a prior study,
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which demonstrated that ~75% of LUSC patients in China were
found to carry SOX2 amplification32. Our work also found that
SOX2 overexpression occurred in LSCC. However, the association
between SOX2 and indicators of better prognosis in LSCC should
also be noted in a previous study, where increased SOX2 may
prolong the survival of patients with LSCC8. Additionally, a study
by Lu et al. found that the prognosis of patients with high SOX2
expression may be more satisfactory than those with low SOX2
expression33, but this point could not be replicated using the
Michigan squamous cell carcinoma samples. In addition, some
researchers found that the prognosis of patients with high SOX2
expression was better than those with low SOX2 expression, but
they also pointed out that the SOX2 expression was appreciably
correlated with the pathological type of cancer34–36. Previous
studies suggest that LSCC patients with high SOX2 expression
might present better prognosis. Nevertheless, our results indicated
that SOX2 may be carcinogenic during lung cancer development,
which may be due to the difference in methods employed by
different laboratories, such as molecular methods for detecting
SOX2 copy number status, or threshold settings for distinguishing
different amplification levels. An additional consideration is the
difference between cohort and tumor heterogeneity.
PAKs belong to the non-receptor serine/threonine protein

kinase family and have been well studied for locating at the
intersection of several signaling pathways that mediate multiple
cellular processes and participating in cancer development37. In
this study we identified the up-regulated expression of PAK2 in
LSCC tissues and substantiated that PAK2 could trigger malignant
behaviors of LSCC cells. Furthermore, through a series of gain- and
loss- of function assays we uncovered that the existence of SOX2
was the precondition for the regulatory effect of PAK2 on LSCC
cells. In other words, PAK2 modulated the formation of LSCC
through interacting SOX2. Subsequently, we managed to explore
the downstream mechanism and found that PAK2 and SOX2 co-
regulated DEK gene. As a typical oncogene, DEK has been

reported for being up-regulated in various cancers11. Furthermore,
emerging evidence has revealed that the overexpression of DEK in
NSCLC participated in the pathogenesis of NSCLC via stimulating
the proliferation and invasion of NSCLC cells12–14. In agreement
with these reports, our data substantiated that the knockdown of
DEK could repress the malignant phenotypes of LSCC cells. Our
in vivo experiment further verified the LSCC-inhibiting function of
DEK knockdown. Considering DEK was co-modulated by SOX2 and
PAK2, in this study we identified the PAK2/SOX2/DEK axis involved
in the pathogenesis of LSCC.
In conclusion, PAK2 binds to the transcription factor SOX2 and

thus activates the expression of DEK, thereby driving malignant
behavior and tumor growth of LSCC cells. The overexpression of
PAK2 was able to augment the viability and the migratory and
invasive potential of LSCC cells, while the knockdown of SOX2 or
DEK reversed the promoting effect of PAK2 overexpression. Our
study lays a theoretical foundation for deeper understanding of
the pathogenesis of LSCC. More importantly, our findings provide
new therapeutic targets and insightful information for enhancing
targeted therapy of LSCC.

DATA AVAILABILITY
The data that supports the findings of this study are available in the paper and
supplementary materials.
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