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A convolutional neural network model for survival prediction

based on prognosis-related cascaded Wx feature selection
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Great advances in deep learning have provided effective solutions for prediction tasks in the biomedical field. However, accurate
prognosis prediction using cancer genomics data remains challenging due to the severe overfitting problem caused by curse of
dimensionality inherent to high-throughput sequencing data. Moreover, there are unique challenges to perform survival analysis,
arising from the difficulty in utilizing censored samples whose events of interest are not observed. Convolutional neural network
(CNN) models provide us the opportunity to extract meaningful hierarchical features to characterize cancer subtype and prognosis
outcomes. On the other hand, feature selection can mitigate overfitting and reduce subsequent model training computation
burden by screening out significant genes from redundant genes. To accomplish model simplification, we developed a concise and
efficient survival analysis model, named CNN-Cox model, which combines a special CNN framework with prognosis-related feature
selection cascaded Wx, with the advantage of less computation demand utilizing light training parameters. Experiment results
show that CNN-Cox model achieved consistent higher C-index values and better survival prediction performance across seven
cancer type datasets in The Cancer Genome Atlas cohort, including bladder carcinoma, head and neck squamous cell carcinoma,
kidney renal cell carcinoma, brain low-grade glioma, lung adenocarcinoma (LUAD), lung squamous cell carcinoma, and skin
cutaneous melanoma, compared with the existing state-of-the-art survival analysis methods. As an illustration of model
interpretation, we examined potential prognostic gene signatures of LUAD dataset using the proposed CNN-Cox model. We
conducted protein—protein interaction network analysis to identify potential prognostic genes and further analyzed the biological
function of 13 hub genes, including ANLN, RACGAP1, KIF4A, KIF20A, KIF14, ASPM, CDK1, SPC25, NCAPG, MKI67, HIURP, EXO1, HMMR,
whose high expression is significantly associated with poor survival of LUAD patients. These findings confirmed that CNN-Cox
model is effective in extracting not only prognosis factors but also biologically meaningful gene features. The codes are available at

the GitHub website: https://github.com/wangwangCCChen/CNN-Cox.
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INTRODUCTION

Cancer is a heterogeneous disease driven by diverse gene
mutations, and the analysis of genomics data is essential to
extract molecular factors related to disease progression and
prognosis'. A large amount of various omics data has been
generated by high-throughput sequencing techniques, such as
genomics, transcriptomics, proteomics, and metabolomics. There
are some prominent resources of cancer genomics data, such as
The Cancer Genome Atlas (TCGA)?, the Catalog of Somatic
Mutations in Cancer®, and the Molecular Taxonomy of Breast
Cancer International Consortium?. The main prediction tasks in the
biomedical field include cancer diagnosis, tumor subtype classi-
fication, and prognosis prediction®®, Predicting cancer prognosis
accurately from large-scale genomics data remains challenging
due to the complexity of genomics data. Among tens of
thousands of genes, most genes do not contain informative
mutations, making it critical to extract prognosis-related key gene
features’. In addition, there are unique challenges to perform
survival analysis, arising from the difficulty in utilizing censored
samples whose events of interest are not observed.

Survival analysis methods can be classified into two main
categories: statistical methods and machine learning-based
methods®. Cox regression model is the most widely used statistical
method, which is built on the proportional hazards assumption
and partial likelihood for parameter estimation'®. There are some
variants of Cox model in the literature, such as regularized Cox
models with /;-norm, /,-norm or elastic-net penalty, CoxBoost, and
time-dependent Cox model'"'%. Machine learning based survi-
val analysis methods are usually applied to high-dimensional
problems and take advantage of optimization to learn the
nonlinear relation between covariates and survival time. Survival
trees, Bayesian methods, support vector machines, and neural
networks are the most prevalent machine learning-based
methods for survival analysis'>™'8,

Deep learning technologies have achieved great success in
computer vision field, with advantages of learning nonlinear low-
dimensional representations, such as convolutional neural net-
work (CNN), auto-encoders, and recurrent neural networks'® %2,
Specially for high-throughput genomics data, deep learning has
been confirmed to be able to capture biologically relevant
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features from high-dimensional genomics data?®*™%%, Several

promising studies have applied variational auto-encoders on
gene expression data for cancer subtype classification and survival
analysis®>?°, Deep learning approaches usually employ multi-layer
neural networks, with huge numbers of parameters to be
optimized. Optimizing large number of parameters with limited
samples tends to cause the overfitting problem that leads to
ineffective performance on the test data.

CNN architecture uses convolution filters to automatically
extract high-level features from raw elements, enabling the
network trained much deeper with fewer parameters by weight
sharing and local connections®’. However, the application of CNN
model on genomics data still has limitations, because gene
expression data lacks local motifs and can't show spatial
coherence like image data. Lyu and Haque proposed to transform
gene expression vectors into images based on the chromosome
location, and subsequently applied CNN models for tumor type
classfication?®, Ma and Zhang presented OmicsMapNet approach
to rearrange omics data into structured images where functional
related molecular features are spatially adjacent. Then they trained
CNN models on RNA-seq data to predict the malignancy grade of
diffuse gliomas®®. Guillermo proposed to rearrange RNA-seq data
into gene expression images using gene relative positions based
on their molecular function. To address the overfitting problem,
they adopted the transfer learning approach to first pre-train CNN
model on non-lung TCGA Pan-Cancer samples, and the resulting
network was subsequently fine-tuned on lung cancer samples to
improve survival prediction of lung cancer patients°.

As is known to all, training CNN model on genomics data
involves the overfitting problem resulting from the curse of
dimensionality inherent to gene expression data. Several studies
have shown that shallower CNN models are more effective in
cancer genomics prediction, by reducing the number of training
parameters to mitigate the overfitting problem?*. Hence, feature
selection approaches should be attached importance to analyzing
genomics data. To effectively identify prognosis-associated genes,
Shin and Park proposed a novel neural network-based feature
selection algorithm named cascaded Wx (CWx), which ranks
features based on the capability of distinguishing high-risk and
low-risk groups in a cascaded manner®'. The results indicated that
CWx identified the best candidate gene set to predict survival
prognosis, highlighting CWx algorithm as an effective feature
selection approach in survival analysis.

The main objective of this work is to present a new CNN-based
survival analysis model that combines special 1D-CNN designs
with prognosis-related feature selection CWx approach, with the
advantage of superior performance and computation effi-
ciency with light training parameters. To evaluate the effective-
ness of the newly proposed method, we conduct extensive
experiments on TCGA RNA-seq expression datasets from seven
representative cancer types, compared with the existing state-of-
the-art survival analysis methods. The results demonstrated that
the newly proposed method achieved more stable and superior
survival prediction accuracy assessed by the concordance index.

Q. Yin et al.

Furthermore, effective feature selection allows us to perform
model interpretations to elucidate prognosis gene markers for
each cancer type.

MATERIALS AND METHODS

Dataset and preprocessing

In this study, we used the public TCGA pan-cancer RNA-seq dataset, which
can be accessed by the UCSC Xena data browser (https://xenabrowser.net/
datapages/)*”. The dataset contains 10,535 samples from 33 tumor types,
measured by log2(TPM + 0.001) transformed RSEM values, in which the
number of original genes is 60,498. We firstly retained the top 20K most
variably expressed genes based on the median absolute deviation, and
removed genes with low information burden (mean <0.5 or standard
deviation <0.8). A total of 6407 genes remained after the filtering step. The
clinical outcome variables are derived from the Pan-cancer Atlas
phenotype dataset, with four types of survival endpoints, overall survival,
disease-specific survival, disease-free interval, and progression-free
interval.

In this study, we chose overall survival as the survival endpoint. We
denote gene features as XeR™P, survival time as TeRY, binary event
indicator as 5€R", N is the number of patients and p is the number of gene
features. If §;=1, T; represents the survival time between the start of
observation and occurrence of event (death). If §;=0, T; represents the
censored time between the start and the end of observation. For each
gene feature X;;, we calculated normalized Z-score by subtracting mean X;
and dividing it by the standard deviation g; of gene j across all samples,

that iS, ZjJ = X";X/

carcinoma (BLCA), head and neck squamous cell carcinoma (HNSC), kidney
renal cell carcinoma (KIRC), brain low-grade glioma (LGG), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma (LUSC), and skin
cutaneous melanoma (SKCM), since they have more than 400 patient
samples and 50 uncensored samples. Table 1 provides the sample
information of each cancer type used in the study. Due to survival
differences of different cancer type patients, referring to previous literature
on survival analysis, we chose to fit models for each cancer type separately.

. We selected seven different cancer types, bladder

CNN-Cox model combined with CWx feature selection

For a given sample j, it is represented by a triplet (x;y;5)), XERVP is the
feature vector, §; is the event indicator, i.e,, §;=1 represents an occurred
event (death) and y; is time to event T; for an uncensored instance,
otherwise §; = 0 represents a censored instance and y; is the censored time
C:. The target of survival analysis is to estimate the survival time 7; for a
new sample j with gene feature x;. The most common survival analysis
model is the Cox proportional hazards (CoxPH) model, following the
proportional hazards assumption:

h(t,X,‘) = ho(t) . exp(BTxi) (1)

The partial likelihood is the product of the probability of all samples,
defined as follows:

6i
e =TI, {E elbx) } @

JjER; eXp(BTX])

where R; is the set of patients still at risk of death at any time t which is
larger than T; of the ith subject, i.e,, R; = {j:T; > T}}. The coefficient vector § is

Table 1. Sample size and censored ratio for seven different cancer type datasets.

Cancer type Sample size Uncensored Censored Censored ratio
LUAD 551 206 345 62.61%

BLCA 422 186 236 55.92%

HNSC 543 250 293 53.96%

KIRC 596 198 398 66.78%

LGG 514 127 387 75.29%

SKCM 454 214 240 52.86%

LUSC 539 240 299 55.47%
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estimated by maximizing the partial likelihood, or equivalently, minimizing
the negative log-partial likelihood'®:

—logL(B) = — ZL 6,-{/3Tx,- — log {ZJER’ eXP(BTXj)} } )

Faraggi and Simon'® extended CoxPH model to nonlinear neural
network framework, replacing the log hazard ratio 8'x; in CoxPH model by
the output of neural network g(x,w). Therefore, the nonlinear hazard
function becomes h(t,x;) = ho(t) - exp(g(x;,w)), and the negative log-
partial likelihood becomes

w) = =31 6:{g00,0) —log[>" _, explglx,w))] } @

However, this simple extended model is not feasible for high-
throughput gene expression data.

Different CNN models have been proposed to apply for cancer subtype
classification tasks on gene expression data>>—>°, Mostavi proposed three
simplified CNN designs with only one convolution layer directly trained on
unstructured gene features, named 1D-CNN, 2D-Vanilla-CNN, and 2D-
Hybrid-CNN respectively®®. The 2D-Vanilla-CNN model follows the com-
mon CNN framework, applies 2D convolution kernels on image inputs to
extract local features, and passes the output to a max-pooling layer, a fully
connected layer, and a prediction layer. Inspired by parallel towers in
Resnet module, 2D-Hybrid-CNN model applies two 1D convolution kernels,
one with the size of a row slides vertically and the other one with the size
of a column slides horizontally across the 2D matrix input (see Fig. 1A). For
the 1D-CNN model, it takes the gene expression as a vector and applies
one-dimensional convolution kernels to the input vector (see Fig. 1B). It is
noteworthy that gene features in the vectorized input are arranged in the
gene symbol’s alphabetic order from the data file, and we did not make a
specific permutation of the gene positions. The 1D-CNN model captures
temporal relationships between adjacent input values, yet 2D-Hybrid-CNN
model can capture global unstructured features. The 2D-Vanilla-CNN
model is not only highly-intensive trained and more difficult to converge,
but also achieved lower prediction accuracy comparing with the other two
CNN model designs. Hence, we chose to develop new survival analysis
models based on simpler 1D-CNN and 2D-Hybrid-CNN architectures.

Inspired by CNN-based cancer type classification models outlined in
Ref. ¥, we extended it to survival analysis and designed a similar CNN
framework for survival analysis models: CNN-Cox model based on 2D-
Hybrid-CNN  framework, and 1D-CNNCox model based on 1D-CNN
framework. In this study, we proposed a novel survival analysis model
that takes advantage of the CNN and Cox proportional hazards model,
through performing an output Cox-regression layer based on activation
levels of the hidden layer of the CNN framework. Hence, our proposed
CNN-Cox model architecture is a combination of 2D-Hybrid-CNN and
CoxPH model, as illustrated in Fig. 1A. The objective function of CNN-Cox is
the negative partial log-likelihood defined at Eq. (4), with nonlinear
proportional hazards g(x;,w) defined as follows:

g(x;, w) = B(o(ws(FI(MaxPool(o(wp, ® X; + by))

+ MaxPool(o(w, ® x; + b,)))) + b¢)) + d )

wy, and w, denote horizontal and vertical 1D convolution kernels,

respectively. MaxPool denotes max-pooling layer, FI denotes flatten layer,

wr and by denote the weights and bias of full connected layer, 8 and d

denote the weights and bias of Cox-regression output layer. Accordingly,

the nonlinear proportional hazards g(x;w) of 1D-CNNCox model is defined
as follows, shown in Fig. 1B:

g(xi, w) = B(o(ws(FI(MaxPool(o(w. @ x; + bc)))) + br)) +d (6)

Feature selection is an important dimension reduction method,
extremely useful for genomics data analysis tasks. Park et al.>' developed
a neural network-based feature selection method named Wx, which ranks
features based on the discriminative index score to distinguish different
groups. They further proposed a prognosis-related feature selection
algorithm named cascaded Wx (CWHx), which ranks gene features based
on the discriminative index score to classify high-risk and low-risk groups
with different survival time cutoffs in a cascade manner. Specifically, the top
features are selected using the following discriminating power equation:

DI/‘ = ‘Whighyj,high - Wlowyj,low| (7)

SPRINGER NATURE

Whigh denotes training weights linked to high-risk output, W,,,, denotes
weights linked to low-risk output of the final layer. X; nhigh, Xjjow represent
average expression values of gene j in the high-risk and low-risk groups,
respectively. Firstly, patient samples were divided into high-risk and low-
risk groups according to whether they have survived for S years, that is,
dead patients within S years form the high-risk group, whereas patients
who lived more than S years form the low-risk group. The censored
patients were excluded in the training stage. The cascade second and third
steps are similar as the first step with different survival time cutoffs (S;
versus S,, Ss versus S,;). Meanwhile, input gene features are reduced by a
quarter after each step, retaining one quarter of top genes in sorted scores
in descending order, as illustrated in Fig. 1C. The evaluation revealed that
cascade framework significantly improved prognostic-related feature
selection performance. Motivated by the success of CWx algorithm, we
develop a novel CNN-based survival analysis approach, integrating CNN-
Cox models with CWx feature selection to improve survival prediction
performance. The workflow for our proposed survival analysis model is
shown in Fig. 1C. For the preprocessed gene expression data of 7 different
cancer types with 6407 genes, the CWx feature selection approach was first
applied to select different numbers of prognostic gene features (3000/
2000/1000/500/196/144/100/81/49/25), and then CNN-Cox model was
trained and evaluated on datasets with selected gene features using the
five-fold cross-validation strategy based on optimal hyper-parameters
selected on independent validation data subsets.

Evaluation metrics

To evaluate the survival prediction performance of all models, we used the
five-fold cross-validation strategy shown in Fig. 1C. In each random
sampling, we trained the models with 80% of the data, and the remaining
20% was used for evaluating models. The prediction performance in
survival analysis was evaluated using C-index, which is the concordance
index to measure concordance between predicted risk and actual survival
outcome'®, The C-index can be seen as a summation over relative risk of all
events, where patients with longer survival time and lower log hazard
ratios, or patients with shorter survival time and higher log hazard ratios
are considered concordant. The C-index is computed as follows:

L1
= EZi:é,:1 Zj:y,<y, 1(Bxi>B") ()]

Where m denotes the number of all comparable pairs, ¢ is the C-index
score value between 0 and 1. We also calculated the micro-average C-
index on seven different cancer type datasets, defined as follows:

Siani-&
7

i=1 i

)

micro_ave_¢ =

where n; is the number of samples in the ith cancer type, ¢; is the predicted
C-index value on the jth cancer type dataset.

RESULTS

Hyper-parameter selection

With the aim of assessing the effectiveness of CNN-Cox model
architectures, we first compared new models with Cox-ElasticNet
(Cox-EN) and standard neural network-based NN-Cox model,
which has two fully connected hidden layers and an output Cox-
regression layer. We implemented neural network-based models
using Keras with TensorFlow backend, Cox-EN model using scikit-
survival package. For CNN-Cox model with 2D-Hybrid-CNN
structure, we reshaped the screened 6407 gene inputs as a matrix
with 100 rows and 65 columns by adding 93 zeros in the last
column.

For a fair comparison, the hyper-parameters of each model
were optimized using the grid search method through the five-
fold cross-validation on the training data subsets for each cancer
type. The hyper-parameters of CNN-Cox model include the size of
1D convolution kernels (1st_CNN and 2nd_CNN), the number of
nodes in the fully connected layer (dense_size). The search ranges
of three hyper-parameters in the grid search was respectively set
as [8,16,32,64,128], [8,16,32,64,128] and [16,32,64,128,512]. For the
1D-CNNCox model, there are only two hyper-parameters, the size

Laboratory Investigation (2022) 102:1064 - 1074
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Optimal
hyperparameter |

Network architecture and workflow of CNN-Cox model. A CNN-Cox model based on 2D-Hybrid-CNN architecture. B 1D-CNNCox

model based on 1D-CNN architecture. C Workflow for preprocessing, CWx feature selection, training, and testing of CNN-Cox model.

of 1D convolution kernel (CNN_size) and the number of nodes of
the fully connected layer (dense_size). For the NN-Cox model,
hyper-parameters include the number of nodes in two fully
connected layers. For the Cox-EN model, it combines ¢; and ¢,

Laboratory Investigation (2022) 102:1064 - 1074

penalties to perform feature selection, there is a hyper-parameter
¢,-ratio which controls the regularization level. Supplementary
Table S1 shows optimal hyper-parameters selected by the grid
search method for four survival analysis models on seven cancer
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type datasets, respectively based on the original 6407 genes and S | al =l ! =] & I gt
100 genes selected by the CWx approach. g N oY - © a9 2 24
As a demonstrating example, we plotted hyper-parameter z22888¢gsg s ;35
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with 6407 genes in Supplementary Fig. S1. We can see that g‘; 2 2
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- . . S N0 =~N©!LmIITEY
with optimal hyper-parameter results in Supplementary Table S1. ST RS2 8R o Tz 39
n % 9 Y YwYoyY 5 oge
Effectiveness of CNN-Cox survival analysis model S e e -?5 5%
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gradient boosting machines (GBM), survival support vector s 5838888 587
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LGG, HNSC, LUAD, and LUSC. The performance of C-index values & |5 ‘@ S ?
of seven models on seven cancer type datasets based on a T eemdngxe8oa
different number of genes in five times five-fold cross-validation " -~ 55 8B 9888 EENE ©
are compared and shown in Supplementary Table S2, and L ®cccecoco | Ls
Wilcoxon signed-rank test results of CNN-Cox model comparing & By gg
with other baseline models on each dataset are shown in Fig. 4E. G LY s3
We can see that CNN-Cox model shows significantly better g = | il =| &l &l w gagé
performance, except 1D-CNNCox and RSF model. Moreover, € o § E @ § % @ % 4259
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the original 6407 genes without feature selection. The average 2 $53¢
improvement of CNN-Cox against other models is nearly 2%, 8 M2
except the competitive performance of RSF model. Moreover, we P - ﬁ <
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these micro-average C-index values, assessing the statistical 5 § Alel g e el g s a:"é gf
significance of the model improvement of CNN-Cox and 1D- g Ty gf‘% 2
CNNCox*. The significance value Fr=9.7206 is far greater than S R R
the critical value 2.2541 at a = 0.05 significance level, showing that g § 883¢c8
these seven models perform significantly differently. Then we § Oz gl alee =l a 3§§
performed the post-hoc Bonferroni-Dunn test for paired compar- s 8 8585853 3C ¢ 8L« S
isons of CNN-Cox against other baseline models. The critical » © eSS S S 258g¢E
difference (CD) diagram for statistical test results is shown in 5 s g §‘§
Table 2, where values on x axis denote average ranks of models. If 8 g '; g
the rank difference between two methods is smaller than CD = S SN RGN 25 =58
2.490, the performance difference is not significant (connected by o § BRLEHBRY (22543
a horizontal line). We can see from CD diagram that CNN-Cox 5 = © 68695095 EBE S %‘
shows significantly better performance than other models, except b £ § > % 5!
1D-CNNCox and RSF model. ¢ LoETE
We also plotted box-plots of C-index distributions for each ° o M h o~ B3 % 2
cancer type in Fig. 2A, B. We can see that CNN-Cox and 1D- D 882838 § Eoox8
CNNCox (red and blue) both show superior performance on five g SRR o 'ﬁ% E % x -
cancer types, except KIRC and LUAD. We can see from Fig. 2B that g o288 9
these two models still keep superior performance on almost all 2 S50g¢ g
seven datasets based on 100 genes selected by CWx, confirming o Y Y I I I kS %% _§ E
the effectiveness of CWx feature selection for survival analysis E S| E| 2§ 8 & P § a;:g -
models. In order to further verify the effectiveness of CNN-Cox v 2238828888 ¢E8%¢E,7T
network structure, we compared micro-average C-index values on c % S § ER
seven datasets for each model based on a different number of .g 3 E ge8
genes selected by CWx approach shown in Fig. 2C. We can see S 5 O E’g z .
that CNN-Cox and 1D-CNNCox (blue and orange) consistently E nT 8 § 528 %g 252
achieved higher micro-average C-indexes than other baseline Y §3 30898389 o 5%2 =
L. O ©O O © © © © O £+ _. a
models. These results show the robustness and superiority of 2 28Tsg
CNN-Cox and 1D-CNNCox models on survival prediction g Enl28d
performance. 8 528538 |
From another point of view, we plotted C-index values g 3 L g oY=
difference between 100 genes and initial 6407 genes on each 52 o = E < g 2
cancer type for each model shown in Fig. 2D. We can see that all o 3 ; 5 S s 4 s S £ 768 -
models achieved positive C-index difference values, except Cox- = § 2EI= é T & 5 228 £ E
EN and SSVM models on the KIRC and LGG datasets. These results = @rem=
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Fig. 3 Kaplan-Meier plots and log-rank test results of seven cancer types datasets with CNN-Cox model. The patient samples are divided
into high-risk and low-risk groups based on the predicted hazard ratios. A BLCA, B HNSC, C KIRC, D LGG, E LUAD, F LUSC, and G SKCM.

further confirmed the effectiveness of CWx feature selection for
survival prediction models, as it mitigates the overfitting problem
on high-dimensional gene expression data. Hence, it revealed that
CWx feature selection is very useful to learn meaningful prognosis-
related gene signatures and further improve the survival prediction
performance.

We also performed further survival analysis to evaluate the
performance of CNN-Cox model in survival prediction. We divided
patient samples for each cancer type into high-risk and low-risk
groups based on their predicted hazard ratios. When the
predicted hazard ratio is higher than the median hazard ratio of
all patient samples, the sample is divided into the high-risk group;
otherwise, it will be included in the low-risk group®®. Figure 3
shows Kaplan-Meier plots and log-rank test results of high-risk
and low-risk groups for seven different cancer types using CNN-
Cox model. We can see that log-rank test p-values are lower than
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0.001 and samples of different cancer types are divided into high-
risk and low-risk groups significantly, except HNSC, LUAD, and
LUSC. These survival analysis results revealed that CNN-Cox model
can effectively split samples of different cancer types into high-risk
and low-risk groups.

Inspired by the idea of utilizing clinical information, we used for
reference the research work of Hao et al. on pathway-based
sparse deep neural network model, named Cox-PASNet, to
integrate genomics and clinical data for survival analysis®’. High-
dimensional genomics data would dominate the integration if it is
combined with clinical data directly, due to the unbalanced size
between them. Hence, we introduce clinical data to the model
through a separate clinical layer. The effects of genomics data are
captured by two parallel convolutional layers, whereas the clinical
data are directly introduced into the output layer, along with the
highest-level representation of the last hidden layer as shown in
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Fig. 4A. We chose three clinical characteristics (age at diagnosis,
sex, stage at diagnosis) for six different cancer types, BLCA, HNSC,
KIRC, LUSC, LUAD, and SKCM, since LGG has a large number of
missing data on the cancer stage feature. The performance of
C-index values of seven models on six cancer type datasets
integrating 6407/100 genes and three clinical features are also
compared and shown in Supplementary Table S2. We can see
from Fig. 4B that CNN-Cox model shows better performance after
the introduction of clinical layer, no matter when it is integrated
with 6407 or 100 genes.

In addition, we made the comparison of running time for seven
survival analysis models on seven cancer type datasets based on
original 6407 and 100 selected genes, respectively, which is shown
in Supplementary Table S3 and Fig. 4C, D. In the situation of high-
dimensional 6407 genes, the running time is sorted in descending
order: RSF > GBM > SSVM > 1D-CNNCox > CNN-Cox > NN-Cox >
Cox-EN, especially the running time of RSF is dozens of times of
CNN-Cox. In the situation of 100 genes, GBM, SSVM, and Cox-EN
are more efficient than CNN-Cox, but the running time of RSF is
still ten times of CNN-Cox. Although CNN-Cox shows a comparable
and not-so-significant performance advantage over RSF, compu-
tational efficiency is one advantage of CNN-Cox over RSF.

DISCUSSION

Identifying biologically meaningful gene subset is an essential
step in discovering underlying mechanisms of cancer diseases. As
an illustration of model interpretation for CNN-Cox survival
analysis model, we investigated prognosis-related gene signatures
for the LUAD dataset. Firstly, we conducted the gene set
enrichment analysis (GSEA) to screen differential genes between
the high-risk and low-risk groups.

GSEA and protein-protein interaction network analysis

GSEA is a method for assessing whether a fixed gene set shows
statistically significant and concordant differences between two
biological states (http://www.gsea-msigdb.org/gsea/)*s. We per-
formed GSEA analysis on the LUAD dataset with 6407 genes of
206 patient samples, attained by removing censored and missing
samples on survival time. These samples were divided into high-
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risk and low-risk groups, by taking a 3-year survival time as a
cutoff. Then we loaded gene sets files, phenotype labels, gene
expression, and chip annotation files into GSEA software,
with the adjusted p value FDR<0.25 is set as the statistical
significance cutoff level. We used the HALLMARK gene sets file
from MSigDB*® (http://www.gsea-msigdb.org/gsea/msigdb/) as
predefined gene sets.

The enrichment score (ES) in the GSEA analysis reflects the
degree to which a gene set is over-represented at the top or
bottom of a ranked list of genes. The top enriched gene set of the
LUAD dataset with 6407 genes for the high-risk phenotype is
HALLMARK_HYPOXIA, and the enrichment plot is shown in Fig. 5A.
The top plot shows the running ES as walking down the ranked
list, the score at the peak is the ES for the gene set, and the
leading edge subset of the gene set contains 70 genes that
contribute most to ESs. As the statistic for accounting for
correlations between gene set and expression data, the normal-
ized ES of HYPOXIA gene set is 1.86978 with statistical significance
nominal p value P=0.004219 and adjusted p value FDR=
0.111392. The heatmap of top 50 features for each phenotype is
shown in Fig. 5B, where red colors denote high expressed, blue
colors denote low expressed between ranked genes and
phenotype. For the LUAD dataset, we achieved 1072 differential
genes whose ESs are less than —0.12 or greater than 0.15 in the
GSEA analysis.

As we know, PPl play an essential role in regulating biological
processes. The densely connected regions in PPl network may serve
as enriched function clusters. The 59 overlapping genes are
obtained by the intersection of 1072 differential genes with 100
genes selected by CWx method. We imported these 59 genes into
STRING database to construct PP network (https:/string-db.org/)*°,
resulting 56 nodes and 42 edges when the confidence score
threshold was set as 0.9. We used Markov cluster algorithm in
STRING to identify function clusters of PPl network. The most
significant cluster contains 13 hub genes, including ANLN, RACGAP1,
KIF4A, KIF20A, KIF14, ASPM, CDK1, SPC25, NCAPG, MKI67, HIURP, EXO1,
and HMMR, as shown in Fig. 5C. For the other six cancer type
datasets, we also conducted GSEA and PPl network analysis to
identify hub genes for each cancer type dataset, which are
respectively shown in Fig. 5D-1. We can see that APOH, FGA, FGG,
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HPX, ITGAX, SERPIND1 are hub genes of LUSC dataset. CD247, CD3D,
CD3G, CD5, EPHA4, IKZF3, LCK, SLA2, SRC ZAP70 are hub genes of
BLCA dataset. ADH6, ALDH3A2, BBOX1, GATM are hub genes of KIRC
dataset. CCNBI1, GADD45A, LPIN3, NUF2, PKMYTI1, PTTG1, WEET are
hub genes of LGG dataset. BST2, GBP2, IFIT3, IRF1, PSMBS, PSMB9,
STATI1 are hub genes of SKCM dataset. CCL20, CSF3, CXCL2, CXCLS,
IL1B, KITLG are hub genes of HNSC dataset.

Biological functions of hub genes
Hub genes are highly interconnected genes and play central roles
in the PPl network. They may be potential biomarkers and
therapeutic targets. To determine the biological functions of these
13 hub genes, we used Gene Ontology (GO) analysis (https://
david.ncifcrf.gov/) to identify enriched genes using the statistical
significance threshold FDR<0.05. Table 3 shows the most
enriched GO biological processes terms in hub genes of PPI
network for six cancer type datasets. The significant biological
processes are enriched in mitotic cytokinesis, microtubule-based
movement, mitotic nuclear division, and cell division.

In the most significant cluster 1, Anillin (ANLN) encodes an actin-
binding protein that plays key roles in cell growth and migration
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in cytokinesis. Previous studies have confirmed that ANLN
expression is associated with patient prognosis with the breast,
bladder, and colorectal cancers. There are some evidence showing
that ANLN is related to metastasis in LUAD by promoting
epithelial-mesenchymal transformation of tumor cells*'.

Rac GTPase activating protein 1 (RACGAPT) plays an essential
role in the inducing of cytokinesis and promoting cancer
proliferation and growth. RACGAPT expression is significantly
upregulated in pan-cancers, and high RACGAPT expression is
correlated with the poor prognostic outcome in six cancer types,
including BRCA, LUAD, LGG, LAML, HNSC, and PAAD*,

Kinesin superfamily (KIF) comprises a group of microtubule-
based and ATP-powered motor proteins, which participate in
mitosis, intracellular transportation, and cytoskeletal reorganiza-
tion. KIF4A has been identified as an oncogene and contributor to
malignant progression in lung cancer, oral cancer, prostate cancer,
and breast cancer®. The study observed that KIF4A expression is
correlated with cancer stage, metastasis, and tumor dimension,
and high KIF4A expression is significantly associated with shorter
overall survival in multiple cancer types. KIF20A is a member of the
kinesin superfamily-6, which localized at Golgi apparatus and
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Table 3. Enriched GO biological processes terms in hub genes of PPl network for six cancer type datasets.
Cancer types GO terms Description P value FDR Genes
LUAD GO0:0000281 Mitotic cytokinesis 4.70E-06 6.71E-04 ANLN, RACGAP1, KIF4A,
KIF20A
GO0:0007018 Microtubule-based movement 1.88E-05 0.001341272 RACGAP1, KIF4A, KIF14,
KIF20A
GO0:0051301 Cell division 6.46E-05 0.003080959 ASPM, CDK1, KIF14, NCAPG,
SPC25
BLCA GO0:0050852 T cell receptor signaling pathway 1.00E-06 2.05E-04 ZAP70, LCK, CD3G, CD247,
CD3D
GO0:0045059 Positive thymic T cell selection 1.06E-05 0.001076609 ZAP70, CD3G, CD3D
GO0:0007169 Transmembrane receptor protein tyrosine kinase 2.53E-05 0.001290254 EPHA4, ZAP70, SRC, LCK
signaling pathway
HNSC G0:0019221 Cytokine-mediated signaling pathway 3.76E-07 5.41E-05 CSF3, CXCL8, CCL20, IL1B,
cXcLe
GO0:0030593 Neutrophil chemotaxis 7.03E-07 5.41E-05 CXCL8, CCL20, IL1B, CXCL2
GO:0006955 Immune response 1.80E-06 9.26E-05 CSF3, CXCL8, CCL20, IL1B,
cxcLe
LGG GO0:0000079 Regulation of cyclin-dependent protein serine/ 1.06E-04 0.006378325 CCNB1, GADD45A, PKMYT1
threonine kinase activity
GO0:0051301 Cell division 1.45E-04 0.006378325 WEET, CCNB1, PTTG1, NUF2
GO0:0000086 G2/M transition of mitotic cell cycle 7.65E-04 0.022440237 WEET1, CCNB1, PKMYT1
LUSC GO0:0031639 Plasminogen activation 2.94E-06 1.73E-04 FGA, APOH, FGG
GO:0007160 Cell-matrix adhesion 2.94E-04 0.008039642 FGA, FGG, ITGAX
G0:0002576 Platelet degranulation 4.09E-04 0.008039642 FGA, APOH, FGG
SKCM GO0:0060337 Type | interferon signaling pathway 2.98E-12 3.10E-10 BST2, STATI, IRF1, GBP2,
PSMBS, IFIT3
GO0:0051607 Defense response to virus 2.91E-05 0.001510741 BST2, STATI1, IRF1, IFIT3
GO0:0060333 Interferon-gamma-mediated signaling pathway 2.03E-04 0.007032439 STATI, IRF1, GBP2

participates in organelle dynamics. Previous studies have also
shown that high KIF20A expression is associated with poor
prognostic outcomes in pan-cancers, such as pancreatic, breast,
glioma, prostate, and bladder cancers**. A similar oncogenic
function of KIF14 in the cell cycle and proliferation has also been
reported. Growing evidence showed that KIF family genes affect
patients' prognosis outcomes by involving cell cycle-related
biological processes and pathways*.

Abnormal spindle-like microcephaly-associated (ASPM) is a
centrosomal protein that plays a crucial role in mitotic spindle
regulation, neurogenesis, and brain size regulation. Studies
reported that ASPM is highly expressed in a variety of cancers
and high ASPM expression is related to poor overall survival of
LUAD patients*®. As a critical mitotic checkpoint gene, cyclin-
dependent kinase 1 (CDK1) upregulation may be indicative of poor
survival and higher risk for cancer recurrence. CDK1 could be a
potential prognostic marker gene in LUAD patients*’. Spindle pole
body component 25 (SPC25) acts as a key component of the
kinetochore associated NDC80 complex*®, which is required for
chromosome segregation and spindle checkpoint activity. SPC25
expression was enhanced in different kinds of malignant tumors,
such as liver, endometrial, and lung cancer. The study in Ref.*®
verified that SPC25 was a potential prognostic biomarker for poor
overall survival in LUAD patients.

In summary, all these genes have biological functions asso-
ciated with mitotic cytokinesis and spindle behavior of mitotic cell
division. To validate whether these identified 13 hub genes are of
prognostic significance, we analyzed the correlation of their
expression levels with LUAD patients' survival. As shown in
Supplementary Fig. S2, we found that all these 13 hub genes were
upregulated expressed and their high expression is correlated
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with poor survival of LUAD patients. This evidence gives support
to the prognostic significance of these hub genes for LUAD
patients. In this sense, our proposed method has the benefit of
capturing high-order interactions among gene features to make
accurate survival predictions.

In conclusion, we proposed a novel CNN-Cox model which is a
CNN-based survival prediction model, combining with the effective
feature selection to extract prognosis-related genes from gene
expression data. Compared with the existing state-of-the-art
survival analysis models, our developed CNN-Cox model achieved
more robust superior prediction accuracy on various cancer type
datasets. In addition, the simplified CNN design based on simpler
1D convolution operations induces the reduction of the training
cost, which is highly desirable in genomics studies. This also allows
us to perform a model interpretation to elucidate prognosis
markers for each cancer type. Despite of our efforts, the overfitting
problem remains challenging for gene expression data analysis
tasks. In future works, we plan to utilize the alternative transfer
learning strategy to improve the survival prediction, by pretraining
deep learning models on the source dataset with sufficient samples
and fine-tuning survival analysis models on the final target dataset.
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