
ARTICLE

Interpretable tumor differentiation grade and microsatellite
instability recognition in gastric cancer using deep learning
Feng Su1,5, Jianmin Li2,5, Xinya Zhao3,5, Beining Wang2,5, Yajie Hu3, Yu Sun 3✉ and Jiafu Ji 4✉

© The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2022

Gastric cancer possesses great histological and molecular diversity, which creates obstacles for rapid and efficient diagnoses. Classic
diagnoses either depend on the pathologist’s judgment, which relies heavily on subjective experience, or time-consuming
molecular assays for subtype diagnosis. Here, we present a deep learning (DL) system to achieve interpretable tumor differentiation
grade and microsatellite instability (MSI) recognition in gastric cancer directly using hematoxylin-eosin (HE) staining whole-slide
images (WSIs). WSIs from 467 patients were divided into three cohorts: the training cohort with 348 annotated WSIs, the testing
cohort with 88 annotated WSIs, and the integration testing cohort with 31 original WSIs without tumor contour annotation. First,
the DL models comprehensibly achieved tumor differentiation recognition with an F1 values of 0.8615 and 0.8977 for poorly
differentiated adenocarcinoma (PDA) and well-differentiated adenocarcinoma (WDA) classes. Its ability to extract pathological
features about the glandular structure formation, which is the key to distinguishing between PDA and WDA, increased the
interpretability of the DL models. Second, the DL models achieved MSI status recognition with a patient-level accuracy of 86.36%
directly from HE-stained WSIs in the testing cohort. Finally, the integrated end-to-end system achieved patient-level MSI recognition
from original HE staining WSIs with an accuracy of 83.87% in the integration testing cohort with no tumor contour annotation. The
proposed system, therefore, demonstrated high accuracy and interpretability, which can potentially promote the implementation
of artificial intelligence healthcare.
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INTRODUCTION
Deep learning (DL) technologies have been increasingly studied in
the healthcare field1,2, especially in cancer diagnosis3–5. Molecular
changes in cancer tissues often lead to changes in the
morphology of tumor cells and their microenvironment, resulting
in unique features in hematoxylin-eosin (HE) staining histopatho-
logical images6. DL methods have been proven efficient in
recognizing complex feature patterns from HE images and
contribute to personalized healthcare6.
Gastric cancer is one of the most common tumors in the world,

with great histological diversity7,8 and molecular diversity9. The
biological mechanisms and clinicopathologic characteristics of
different gastric cancer subtypes are extremely different. Further
gastric cancer classification is of great significance for diagnosis,
treatment, monitoring, and prognosis. The histological gastric
cancer subtypes have multiple classification methods, such as
WHO classification, Lauren classification, and Japanese classifica-
tion7. The classification of these histological subtypes is related to
the adenocarcinoma differentiation grade, including well-
differentiated adenocarcinoma (WDA) and poorly differentiated
adenocarcinoma (PDA). The classification adenocarcinoma

differentiation grade is based on the presence or absence of
glandular structure formation10,11. The gastric cancer differentia-
tion grade is usually closely related to the clinicopathologic
characteristics and prognosis, and a well-differentiated tumor
usually has a better prognosis and longer survival length12. In
most of the reported studies, the adenocarcinoma differentiation
grade is judged through manual identification by pathologists13.
Many studies have developed DL systems to identify tumors14, but
the problem of tumor differentiation grade recognition still needs
further investigation.
Among the gastric cancer molecular subtypes, diagnosing

microsatellite instability (MSI) status is of great importance for the
treatment and prognosis of tumors9. Microsatellites are short
tandemly repeated DNA sequences that are widely distributed
throughout the human genome, accounting for ~3% of the
genome15. Damage to the DNA mismatch repair (MMR) function
can cause the insertion or deletion of microsatellites, leading to
genetic mutations in MSI16. In the National Comprehensive
Cancer Network (NCCN) guidelines, MSI status detection is an
important part of the clinical diagnosis process17. Several
MSI detection methods have made great progress, including
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immunohistochemistry (IHC), fluorescent multiplex polymerase
chain reaction (PCR), and next-generation sequencing (NGS)18. All
these MSI detection methods need to carry out additional
diagnostic tests in addition to HE pathological staining, which
requires more tissue samples, time, and costs6,14. To overcome
these limitations, MSI detection methods based on HE staining
images and DL technologies have attracted increasing attention19.
Many studies have proven that DL models can recognize the MSI
status from HE images14,20,21, but the relationships between MSI
status and gastric tumor histological features are still unclear.
In this study, we established a DL system for differentiation

grade recognition and MSI status recognition for gastric cancer. In
addition, we used the convolutional neural network (CNN)
visualization method to explore the key features extracted by
the DL models in differentiation grade and MSI state recognition
to improve DL system interpretability.

MATERIALS AND METHODS
Patient cohorts
We obtained patient samples with gastric cancer from the pathology
archive at Beijing Cancer Hospital from 2015 to 2020. To increase the
reliability of the dataset and DL models, we set strict criteria for screening
the patient samples. The patients were archived based on the following
criteria: (1) the pathological diagnosis was confirmed as gastric adeno-
carcinoma. In addition, according to the microscopic performance, the
tumor was divided into two grades: well-differentiated (mainly composed
of glandular tube-like structure) and poorly differentiated (unrecognizable
or highly irregular adenoid structure; solid structure; scattered infiltration
of poorly adherent tumor cells); (2) had undergone radical gastrectomy;
and (3) the status of MSI was verified by IHC and PCR. If one or more of four
major MMR proteins (MLH1, PMS2, MSH2, and MSH6) were identified to be
lost, the sample was classified as mismatch repair deficient (dMMR). Due to
the inconsistency between IHC and PCR results, cases with dMMR were
further verified by PCR. The patients with dMMR/MSI-H tumors were
classified as MSI type; otherwise, they were classified as MSS type.
Pathological HE staining images and MSI status information were

collected for each patient. The digitized WSIs were acquired at Beijing
Cancer Hospital using a Leica Aperio Versa pathologic scanner (scanned at
×40 magnification using a Leica ImageScope; maximum spatial resolution:
0.243 microns per pixel). Each WSI had ~109~1010 pixels. There were 467
cases in total. All these samples were divided into three cohorts: the
training cohort with 348 annotated WSIs, the testing cohort with 88
annotated WSIs, and the integration testing cohort with 31 original WSIs
without tumor contour annotation.

Annotation of the dataset
The annotation of the HE staining images comprises two sequential steps.
We used Automated Slide Analysis Platform (ASAP) software to implement
image annotation. First, we divided the tissues into tumor and nontumor
regions. Furthermore, we labeled WDA and PDA regions in the tumor
region. The whole annotation process was completed by two pathologists
and finally reviewed by a senior pathologist.

Image tile extraction
Each WSI usually occupies up to gigabytes when uncompressed and
cannot be directly processed by a computer22,23. We used the OpenSlide
tool to segment the WSI into small image tiles for further analysis24,25. The
original WSI was downsampled by a factor of two when extracting image
tiles. The size of the tile was 512 × 512 pixels with a spatial resolution of
0.49 μm/pixel, and the edge length of the tile was 250 μm.
First, there was usually only a part of the region in the WSI that was valid

with the presence of tissue samples, and the other invalid regions had RGB
values of (0, 0, 0) in the mrxs format file. We abandoned the invalid region
in the WSI by setting a threshold setting for the mean value of the RGB
channels for each image tile. If the mean value for all channels is less than
200, the image tile is considered an invalid image tile. Otherwise, the
image tile is valid and needs to be analyzed subsequently.
Next, we assigned labels to each image tile according to image

annotations. In the tumor diagnosis task, the image tiles had three kinds
of labels: other, PDA, and WDA. The tiles of the other class include muscle
tissue, connective tissue, and normal glands. The rule to assign a label to an

image tile: if an image tile belongs to label K, the area referring to label K
should be greater than 75% of the total area of the image tile. In this study,
we also used the term “tumor tile” to refer to the combination of PDA and
WDA tiles. In the MSI diagnostic task, the tiles had two kinds of labels: MSS
and MSI. Only tumor tiles were used in the MSI recognition task. The MSI
status ground truth was patient-level labels. For MSI and MSS patients, all
the corresponding tumor tiles were labeled MSI and MSS, respectively.
Notably, color normalization was implemented over all the image tiles26.

DL model construction
For both tumor and MSI diagnostic tasks, all DL models were developed
based on a pretrained ResNet-18 model based on ImageNet27. We used
transfer learning techniques to fine-tune the DL models. Only the
parameters in the last ten layers were updated, and the parameters in
other layers were frozen. The image tiles were resized to 224 × 224 when
input to the DL model. We used data augmentation methods to train the
DL models, including random cropping and random flipping. In the DL
model training process, the training image tiles were randomly shuffled,
and 12.5% of the training tiles were used as the validation dataset. Other
parameter settings in the training process were as follows: maximum
epochs, 100; batch size, 256; learning rate, 10−6; L2 normalization, 10−4;
optimizer, adaptive moment estimation (ADAM) algorithm. We checked
the validation accuracy of the DL model on the validation dataset every
256 iterations. To avoid overfitting, the training process terminated if the
accuracy was not improved for three consecutive validation times. The DL
architectures and experiments were implemented on a computer with
PyTorch and configured with an Nvidia GeForce RTX 2080 Ti GPU.

DL systems for tumor diagnosis
We divided tumor diagnosis into two sections: tumor recognition and
tumor differentiation grade recognition. Tumor recognition denotes
recognizing whether the input image tile belongs to the tumor class.
Tumor differentiation grade recognition denoted not only recognizing the
tumor but also distinguishing tumor differentiation grades. Corresponding
to these two sections, we developed two models for tumor diagnosis. First,
we established a two-class classification model for tumor recognition,
which classified the input image tiles into tumor and other classes. Second,
we established a three-class classification model for tumor differentiation
grade recognition, which classified image tiles into PDA, WDA, and other
classes. For the tumor differentiation grade recognition model, we
combined the PDA and WDA recognition results as the tumor class and
obtained the tumor recognition results.

DL systems for MSI diagnosis
MSI diagnosis included two adjacent modules: tile-level diagnosis based
on DL models and patient-level diagnosis based on tile fusion. The tile-
level diagnosis denotes using the DL models to calculate the MSS and MSI
probability for each image tile and classify the tiles into MSI or MSS classes.
In the patient-level MSI diagnostic process, we used two methods to fuse
all tumor tile results from a patient and obtained the patient-level MSI
status recognition results. The raw classifier directly compared the ratio of
MSI tiles to the threshold of 50%, and the patients with more than 50% MSI
tiles were classified as patient-level MSI cases. The optimal classifier
explored the optimized ratio of MSI tiles using the training cohort to
achieve better patient-level MSI diagnosis.

Evaluation of DL systems
The tumor diagnosis task includes tumor recognition using a two-class
classification model and tumor differentiation degree recognition using a
three-class classification model. We used general measures to evaluate all
these models in the tumor diagnosis task. First, we used a confusion matrix
to show the results of the models on the test dataset. In addition, we used
precision, recall, and F1 score to evaluate the performance of different
models in tumor diagnosis. Precision denotes how many of the predicted
labels are actually in the ground truth. Recall denotes how many of the
labels in the ground truth are correctly predicted. Both precision and recall
have the best value of 1. However, precision and recall are sometimes
contradictory. We used the F1 score, the weighted average of precision
and recall, to comprehensively consider these two measurements.

F1 ¼ 2 ´ P ´ Rð Þ= P þ Rð Þ

where F1, P, and R denote the F1 value, precision, and recall, respectively.
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Tumor MSI status recognition is a binary classification task. To ensure the
effectiveness and reliability of the performance evaluation, we carry out
both tile-level and patient-level MSI status recognition evaluations. We
used the receiver operating characteristic (ROC) curve and area under the
curve (AUC) to evaluate the tile-level performance of the models. The
measurements of accuracy, the true negative rate (TNR), and the true
positive rate (TPR) were used to evaluate the patient-level performance of
the models. We adopted the bootstrap method to calculate the 95%
confidence interval for patient-level accuracy. This study is implemented in
adherence to Reporting of Diagnostic Accuracy Study (STARD) reporting
guideline.

Gradient-weighted class activation map for DL models
One of the greatest problems for DL technology is model interpretability.
DL models are usually regarded as a “black box”. We cannot understand
how the DL models implement information processing and obtain the final
results. Improving the intelligibility of DL models is very important,
especially in the application of clinical diagnosis. The gradient-weighted
class activation map (Grad-CAM) is a widely used CNN visualization
method that can locate the critical area that the DL model focuses on in
the decision-making process28,29. To validate the reliability and increase
the interpretability of the DL system, we used the Grad-CAM method to
show the key image features that the DL system extracted in the PDA/WDA
and MSI/MSS classification process.

RESULTS
Establishment of a DL system for tumor and MSI diagnosis
The DL system for tumor and MSI diagnosis comprises two
sequential procedures: tumor diagnosis and MSI diagnosis (Fig. 1a).
In the tumor diagnosis procedure, we used the sliding cropping
method to acquire tiles from whole-slide images (WSIs). Then, we
developed a two-class tumor recognition model to classify tiles
into the other and tumor classes and a three-class tumor
differentiation grade recognition model to classify tiles into the
other, PDA, and WDA classes. In the following MSI diagnosis
procedure, only the tumor tiles, including PDA and WDA, were
considered. We developed MSI status recognition DL models to
classify the tiles into MSS and MSI classes and then used a data
fusion method to fuse all the tiles of a patient to obtain the
patient-level MSI diagnosis result.
The architecture and functional relationships of the modules in

the DL system are shown in Fig. 1b. The dataset module contains
the original medical dataset (pathology WSIs and MSI information
for each patient), region of interest (ROI) annotations for tumor,
and image tile dataset extracted according to pathology WSIs and
ROI annotation dataset. The deep learning module includes tumor
diagnosis models and MSI diagnosis models. Human experts can
directly annotate pathological images to obtain ROI annotation

datasets and tile datasets or update these datasets based on the
results of the tumor recognition model. In the application process,
the DL system directly performs end-to-end diagnosis on WSIs and
explores the key features extracted by the DL models in tumor
differentiation grade and MSI status recognition through CNN
visualization methods to improve system interpretability and
reliability.

Performance of tumor diagnosis
Tumor recognition is a fundamental task in pathological diagnosis,
and further DL-based recognition of tumor differentiation grade
will promote an accurate and personalized tumor diagnosis. We
generated an image tile dataset according to the pathology WSI
and image annotation dataset (Fig. 2a, b). These image tiles had
three labels, including other, PDA, and WDA. Notably, the
combination of the PDA and WDA tiles is called a tumor tile
(Fig. 2b). We divided the patients into three classes according to
the presence or absence of PDA and WDA tiles: patients with only
PDA tiles (training: 117; testing: 42), patients with only WDA tiles
(training: 107; testing: 46), and patients with both PDA and WDA
tiles (training: 124; Fig. 2c, Table 1). To accurately evaluate the
performance of DL systems in tumor differentiation grade
recognition, the testing dataset contained patients with either
PDA or WDA tiles. There were approximately one million image
tiles in total, with approximately three hundred thousand tumor
tiles. In both the training and testing datasets, the counts of the
PDA and WDA tiles were well balanced (PDA:WDA; training, 1.15:1;
testing, 1.03:1; Fig. 2d, Table 2).
To efficiently recognize the tumors and the tumor differentia-

tion grade, we developed two models for tumor diagnosis,
including a two-class classification model for tumor recognition
and a three-class classification model for tumor differentiation
grade recognition (Fig. 2e). In the tumor recognition task, the tiles
in the testing dataset were greatly classified, and the F1 values for
the other and tumor classes were 0.9699 and 0.9572, respectively
(Fig. 2f, Table 3). In the tumor differentiation grade recognition
task, the F1 values for the other, PDA, and WDA classes were
0.9741, 0.8615, and 0.8977, respectively. In addition, we used the
combination of PDA and WDA to evaluate tumor recognition
performance by a three-class classification model (F1 values for
the other and tumor classes were 0.9741 and 0.9634; Fig. 2g,
Table 3). In addition, key features that pathologists were
concerned about were consistent with the features extracted by
the DL model in identifying PDA and WDA tiles (Fig. 2h, i,
Supplementary Fig. 1). The proposed DL system exhibited great
tumor diagnosis performance and high interpretability.

Performance of MSI diagnosis
MSI was an important gastric cancer subtype. Identifying MSI
status from pathological images using DL technologies will greatly
increase the efficiency of clinical diagnosis and reduce costs. In the
proposed DL system, we first used the DL model to perform MSS/
MSI classification on tumor tiles. Then, the results of all tumor tiles
from a patient were fused by the majority voting method to
achieve patient-level MSI status recognition (Fig. 3a). There were
264 MSS patients (training: 212; testing: 52) and 172 MSI patients
(training: 136; testing: 36) (Fig. 3b, Table 4). Among all the tumor
image tiles (~3 × 105 tiles), there were 38.45% training MSI tiles,
30.63% training MSS tiles, 13.06% testing MSI tiles, and 17.86%
testing MSS tiles (Fig. 3c, Table 5). We first implemented tile-level
MSI recognition through the DL method and achieved an AUC of
0.7854 [95% CI 0.7825-0.7882] in the testing cohort (Fig. 3d).
Furthermore, we fused the tile-level MSI results of all tumor tiles
from a patient to achieve patient-level MSI status recognition (raw
classifier with an accuracy of 77.27% [95% CI 68.57%–86.36%], true
negative rate (TNR) of 69.23%, and true positive rate (TPR) of
88.89%; optimal classifier with an accuracy of 86.36% [95% CI
78.99–93.90%], TNR of 88.46%, and TPR of 83.33% in the testing

Fig. 1 Construction of the DL system for tumor and MSI
diagnosis. a Flowchart of the DL system. The DL system consists
of two sequential sections: a tumor diagnosis module and an MSI
diagnosis module. b Architecture and functional relationships of the
DL system.
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cohort). (Fig. 3e). The optimal classifier exhibited the best
performance in the testing cohort, and we used it as the tile
fusion method in the following integration testing experiments.
In addition, we used the Grad-CAM method to visualize the key

features identified by the DL model in the MSI status recognition
task (Fig. 3f, g, Supplementary Fig. 2). Although pathologists

generally do not use HE staining images to diagnose MSI status, it
is widely accepted that different MSI statuses usually correspond
to specific pathological features. Our visualization results can
promote establishing a clear relationship between MSI status and
pathological characteristics and can also improve DL system
interpretability and reliability.

Fig. 2 Development and validation of DL systems for tumor differentiation grade recognition. a Annotations of PDA and WDA in WSI.
Yellow, region of poorly differentiated adenocarcinoma (PDA). Red, region of well-differentiated adenocarcinoma (WDA). WSI, whole-slide
image. Scale bar, 1 mm. b Samples of tiles for other, PDA, and WDA classes. The tumor class consists of PDA and WDA. Three tiles for each class
are shown. Size of tiles, 512 × 512 pixels, 250 × 250 μm. c Pie graph of patient cohorts for tumor differentiation grade recognition. PDA and
WDA denote the patients with only PDA and WDA tiles in the tumor class, respectively. PDA and WDA denote the patients with both PDA and
WDA tiles. There are 436 patients in total. d Scatter plot for the number of tiles in different classes. Left panel, the plot of the tile count for PDA
class versus the other class. Right panel, the plot of the tile count for the WDA class versus the other class. Each circle denotes a patient. Gray
circles denote the training dataset. Red circles denote the testing dataset. e DL models to achieve tumor diagnosis. Left panel, the input image
of an HE staining tile. Right panel, two DL models for tumor diagnosis, two-class (other/tumor) classification model, and three-class (other/
PDA/WDA) classification model. The sample HE staining tile belongs to the tumor class and PDA class. f Heatmap of a confusion matrix for
other/tumor classification. The number denotes the count of corresponding tiles. g Heatmap of a confusion matrix for other/PDA/WDA
classification. h Gradient-weighted class activation map for PDA. Upper, original HE staining tiles for PDA class. Down, class activation maps for
the HE staining tiles. Hot regions correspond to key features for DL models to recognize PDA. The red and blue colors indicate greater
importance and less importance, respectively. i Gradient-weighted class activation map for WDA. Hot regions correspond to key features for
DL models to recognize WDA.
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Integration testing of the DL systems for tumor and MSI
diagnosis
To further validate the effectiveness of the proposed DL system,
we applied the integrated tumor differentiation grade and MSI
status recognition models to the integration testing cohort of
original WSIs without tumor contour annotation (17 MSS and 14
MSI cases) (Fig. 4). The system automatically segmented the WSI
into small image tiles and implemented DL-based tumor
differentiation grade recognition at the image tile level (Fig. 4a,
b). The WDA and PDA tiles recognized by the system were marked
on the original HE staining WSI to demonstrate the tumor
diagnosis results. Furthermore, subsequent MSI status recognition
was implemented for PDA and WDA tiles recognized by the
system, and the MSI probabilities for all tumor tiles were exhibited
using a heatmap (Fig. 4c). The integrated system used the optimal
classifier for tile fusion and achieved automatic patient-level MSI
diagnosis with an accuracy of 83.87%, TNR of 88.24%, and TPR of

78.57% in the integrated testing dataset. The proposed DL system
integrated the tumor differentiation grade and MSI status
recognition problems into the same workflow and was suitable
for exploring the relationships between pathological features and
molecular status.

DISCUSSION
To overcome the limitations of the classic diagnostic procedure in
gastric cancer, we established a DL system to achieve intelligent
tumor differentiation grading and MSI status recognition from HE-
stained WSIs. In addition, we used the CNN visualization method
to demonstrate the key pathological features learned by the DL
system to increase the interpretability of the system.
In the tumor evaluation process, it is necessary for pathologists

to identify the degree of differentiation because well-
differentiated tumors tend to have lower atypia, good adhesion,
and an absence of metastasis; that is, they have a positive impact
on guiding the choice of clinical treatment and predicting
prognosis. Furthermore, previous research has shown that the
5-year survival rate and disease-free survival rate of intestinal-type
gastric cancer are significantly different from those of diffuse-type
and mixed-type gastric cancer30, so intestinal-type gastric cancer
is related to a better prognosis. According to the corresponding
relationship between histological grade and Lauren classification,
that is, intestinal-type tumors correspond to high-moderate
differentiation, well-differentiated tumors have a better prognosis.
Therefore, we often regard the degree of differentiation as an
independent risk factor affecting patient survival rate with gastric
cancer in clinical work. Finally, we found that the detailed tumor
differentiation grade recognition model exhibited better perfor-
mance in recognizing tumor regions, which increases the accuracy
of automatic tumor tile-based diagnosis, such as further MSI
diagnosis.
Benefiting from advances in molecular biology research on

molecular subtypes of tumors, such as MSI, great progress has
been made. MSI was related to at least 14 kinds of cancers16. MSI
is spatially popular in colorectal cancer, endometrial carcinoma,
and gastric cancer, with an occurrence frequency of higher than
10%31. The diagnosis of MSI is of great significance for tumor
treatment because most patients with MSI tumors have a good
prognosis and better median overall survival32, and MSI tumors
are especially suitable for immunotherapy18. Several MSI detection
methods based on molecular assays have been well established.
IHC detects the expression of MMR proteins, which can indirectly
reflect the status of MSI. The loss of any MMR proteins composed
of hMLH1, hPMS2, hMSH2, and hMSH6 indicates MMR deficiency
(dMMR). Generally, dMMR is equivalent to MSI18. The PCR method
compares the microsatellite loci detected in tumor tissue with
normal DNA, which can directly reflect the MSI status and has high
sensitivity and specificity33. With the development of genotyping
technology, NGS has become an important tool for cancer
genome analysis. NGS testing directly performs genome sequen-
cing of known genes to test MSI status in tumor tissues34. In most
tumor diagnostic processes, HE pathological staining is an
indispensable test. However, these MSI detection methods require
tests other than HE staining, which increases the time and cost of
diagnosis6,14. Using deep learning methods to achieve MSI status
recognition based on HE staining images can effectively solve
these limitations. The DL and HE-based MSI detection methods
provide an alternative to the molecular assay-based MSI detection
method and will provide patients with fast and accurate cancer
diagnosis services.
Most studies have reported excellent DL and HE-based MSI

detection systems in colorectal cancer14,20,21,35. Kather et al.
developed an MSI detection system from The Cancer Genome
Atlas (TCGA) and Darmkrebs: Chancen der Verhütung durch
Screening (DACHS) datasets; they adopted a two-step automatic

Table 1. Patient cohorts for tumor diagnosis.

Differentiation grade Number of patients

Training dataset

Only PDA 117

Only WDA 107

PDA & WDA 124

Testing dataset

Only PDA 42

Only WDA 46

PDA poorly differentiated adenocarcinoma, WDA well-differentiated
adenocarcinoma.

Table 2. Count of tiles in datasets for tumor diagnosis.

Differentiation grade Tiles in total

Training dataset

Other 624,383

PDA 114,210

WDA 99,217

Testing dataset

Other 131,424

PDA 48,499

WDA 47,022

PDA poorly differentiated adenocarcinoma, WDA well-differentiated
adenocarcinoma.

Table 3. Performance of tumor diagnosis by deep learning models.

Pathological types Recall Precision F1 value

Two-class classification (Tumor recognition)

Other 0.9890 0.9516 0.9699

Tumor 0.9317 0.9842 0.9572

Three-class classification (Differentiation grade recognition)

Other 0.9903 0.9584 0.9741

PDA 0.8275 0.8984 0.8615

WDA 0.8930 0.9024 0.8977

Tumor (PDA & WDA) 0.9416 0.9862 0.9634

PDA poorly differentiated adenocarcinoma, WDA well-differentiated
adenocarcinoma.
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Fig. 3 Development and validation of DL systems for MSI status recognition. a Overview of the MSI status recognition process by the DL
system. Left to right, extracting tumor tiles from WSI, tile-level MSS/MSI classification, fusion of tile-level MSI results, and patient-level MSI
status diagnosis. b Pie graph of patient cohorts for MSI status recognition. MSS and MSI denote the patients belonging to the MSS and MSI
classes, respectively. There are 436 patients in total. c Pie graph of tumor tiles for MSI status recognition. MSS and MSI denote the tumor tiles
belonging to the MSS and MSI classes, respectively. There are approximately three hundred thousand tumor tiles in total. d ROC curve plot for
tile-level MSI recognition in testing cohorts. e Confusion matrix plot for patient-level MSI recognition in testing cohorts. The performance of
the two methods are shown. Left panel, raw classifier comparing the ratio of MSI tiles to the threshold of 50%. Right panel, optimal classifier
by comparing the ratio of MSI tiles to the threshold of 30.7%. f Gradient-weighted class activation map for MSS. Upper, original HE staining
tiles for MSS tumor tiles. Down, class activation maps for the HE staining tiles. Hot regions correspond to key features for DL models to
recognize MSS. The red and blue colors indicate greater importance and less importance, respectively. g Gradient-weighted class activation
map for MSI. Hot regions correspond to key features for DL models to recognize MSI.

Table 4. Patient cohorts for MSI status diagnosis.

MSI status Number of patients

Training dataset

MSS 212

MSI 136

Testing dataset

MSS 52

MSI 36

MSI microsatellite instability, MSS microsatellite stability.

Table 5. Count of tiles in MSI status diagnosis datasets.

MSI status and differentiation grade Tiles in total

Training dataset

MSS 94,632

MSI 118,795

Testing dataset

MSS 55,179

MSI 40,342

MSI microsatellite instability, MSS microsatellite stability.
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tumor detection approach followed by subsequent MSI detec-
tion14. Yamashita et al. classified the HE WSI into seven different
tissue types first and then predicted the MSI status only on the
tumor-epithelial and mucinous tiles; the developed system
showed higher performance than pathologists20. Echle et al.
developed MSI detection models using a large international
cohort with 6406 specimens from TCGA, DACHS, Quick and Simple
and Reliable trial (QUASAR), and the Netherlands Cohort Study
(NLCS) dataset; the prediction performance was robust in
clinicopathologic and molecular subgroups such as different
stages and locations21. Most of these reported studies developed
DL models using supervised learning techniques. Bilal et al.
developed a weakly supervised DL framework to predict key
mutations in colorectal cancer from HE images; they also
predicted the status of molecular pathways by characterizing
histological features of different cellular compositions35.

Multiple reported studies have also achieved MSI detection
from HE images in gastric cancer36–38. The most recently reported
study developed DL models to detect MSI and Epstein–Barr virus
(EBV) status using ten patient cohorts with gastric cancer from
seven countries; different subgroups (including various UICC
stages, Lauren histological subtypes and differentiation grades)
showed subgroup-dependent performance in MSI and EBV
detection36. In this study, we achieved automatic tumor differ-
entiation grade and MSI status recognition in gastric cancer.
Furthermore, the three-class classification model (other/PDA/
WDA) showed better performance than the two-class classification
model (other/tumor) in tumor recognition tasks, providing a better
foundation for predicting MSI status. We also exhibited the key
pathological features related to the tumor differentiation grade
and MSI status learned by DL models using the CNN visualization
method. Compared to Muti et al.’s patch-level visualization

Fig. 4 Integration testing of the DL system for tumor and MSI diagnosis in unannotated WSIs. a Original HE staining WSI. b Differentiation
grade recognition based on HE stating WSI. WSI was segmented into image tiles to achieve differentiation grade recognition. Green squares
denote WDA. Yellow squares denote PDA. c Heatmap of MSI probability for tumor tiles calculated by the MSI status recognition model. The
tumor tiles consisted of WDA and PDA tiles in (b). d Patient-level MSI recognition in the integration testing dataset. Upper, the confusion
matrix plot. Down, evaluation of patient-level MSI recognition performance. TNR true negative rate, TPR true positive rate.
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method36, our work exhibited more detailed pathological features
and increased the interpretability of the models. Apart from model
differences, we also collected a large WSI dataset with 467 cases in
our study. We used 74.52% (348/467) of the cohorts to train the DL
models, 18.84% (88/467) of the cohorts to test the effectiveness of
the tumor differentiation model and MSI detection model, and the
remaining 6.64% (31/467) of the cohorts to test the MSI detection
performance of the integrated system. Compared with most of
reported studies14,20, the training and testing cohorts in this study
are large enough to ensure the reliability of DL models. Muti et al.
included 2823 patients in ten cohorts from seven countries. Large-
scale and multicenter validation make their work more general and
have great potential for incorporation into clinical workflows36.
However, Muti et al.’s study involved no Chinese patients, and this
study implemented complementary studies on Chinese patients.
Clarifying the relationships between MSI status and histological

features for gastric cancer will not only provide insight into the
mechanism of its development and treatment but also increase
the reliability of DL-driven MSI status recognition methods. In
contrast to colorectal cancer, in which MSI is related to mucinous
differentiation, poor differentiation, Crohn’s-like reaction and
tumor budding20, gastric cancer with MSI is associated with
well-differentiated morphological features39. Consequently, it is
meaningful for us to use deep learning to study the MSI status of
gastric cancer directly from HE slides.
To increase the interpretability of the DL system, we used the

CNN visualization method, Grad-CAM, to exhibit the key features
learned by DL models. The main pathological features of
adenocarcinoma include larger cells, larger nuclei, and a higher
nucleus/cytoplasm ratio. The key pathological features of the
formation of glandular structures to distinguish PDA and WDA
were successfully extracted by DL models. These experimental
results further confirmed the correctness and reliability of DL
models in tumor diagnosis based on HE images. We further
extracted the key pathological features in the MSS/MSI classifica-
tion process. The CNN visualization method will be a great tool for
establishing the mapping between morphological characteristics
of gastric cancer and MSI subtypes. In addition, the number of
cases included in our study has been expanded compared with
previous studies, making our study more credible in identifying
MSI morphological characteristics and further applying it to
clinical screening.
The main limitation of this study lies in the lack of tile-level

ground truth in the MSI diagnosis task. The ground truth for MSI
status was patient-level. In the MSI recognition model training, we
assumed that all image tiles from a patient had the same MSI
status. However, tumor tissues usually have great heterogeneity,
and even MSI patients will have MSS tumor tiles. In our further
study, we plan to use weakly supervised learning techniques, such
as multi-instance learning, to develop the MSI status recognition
model to eliminate the impact of the lacking tile-level
ground truth.
Another limitation is that the pathological subtypes considered

in this study are not rich enough. The histological differentiation
grade was correlated with the Lauren classification. It is generally
accepted that well- and poorly-differentiated tumors correspond
to intestinal and diffuse types. Identification of tumor differentia-
tion status plays an important role in clinical treatment selection
and prognosis prediction. In addition, gastric cancer has several
pathological subtypes according to the WHO classification, such as
tubular adenocarcinoma, papillary adenocarcinoma, and signet-
ring-cell carcinoma. There are usually some overlaps between
signet-ring-cell carcinomas and poorly differentiated tumors, and
the signet-ring-cell carcinoma identification is also essential for
precise diagnosis and treatment40. Tumor differentiation grade
recognition and tumor subtype recognition are both critical to
achieving personalized medicine. In this study, we focused on the
recognition of tumor differentiation grade and MSI status. In our

future research, we will do our best to expand the patient samples,
incorporate more pathological subtypes, such as signet-ring-cell
carcinomas, and improve the clinical utility of the system.
In conclusion, the proposed DL system is end-to-end and has

integrated multiple clinical diagnosis procedures, including tumor
differentiation grade and MSI status recognition. The system has
high accuracy, reliability, and interpretability and is strongly
generalizable to other clinical diagnosis tasks. Thus, the system
has great potential to be integrated into clinician workflows and
provides a step forward in the implementation of artificial
intelligence healthcare.
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