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Collagen XVII deficiency alters epidermal patterning
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Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in mice tails and grooves/ridges on the human skin
surface (microtopography). Although the role of spatiotemporal regulation of stem cells (SCs) has been implicated in this process,
the mechanism underlying the development of such epidermal patterns is poorly understood. Here, we show that collagen XVII
(COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene knockout and rescue experiments revealed that COL17
maintains the width of the murine tail scale epidermis independently of epidermal cell polarity. Skin regeneration after wounding
was associated with slender scale epidermis, which was alleviated by overexpression of human COL17. COL17-negative skin in
human junctional epidermolysis bullosa showed a distinct epidermal pattern from COL17-positive skin that resulted from revertant
mosaicism. These results demonstrate that COL17 contributes to defining mouse tail scale shapes and human skin
microtopography. Our study sheds light on the role of the SC niche in tissue pattern formation.
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INTRODUCTION
The skin is the body’s outermost organ and is composed of the
multilayered epithelium, the epidermis, and the underlying
dermis. The epidermis serves as a physical barrier to pathogens
and prevents water leakage from the body1. The epidermis is
maintained by a fine-tuned balance between the proliferation and
differentiation of epidermal stem cells (SCs), which reside in the
epidermal basal layer2. Epidermal SCs need niche proteins such as
integrins and collagen XVII (COL17) for their proper function3,4.
Functional loss of these proteins leads to transient hyperprolifera-
tion of the developing epidermis due to disturbed SC main-
tenance5–7.
Vertebrates have distinct skin patterns. In some, the patterns are

visible through melanin distribution in the skin (e.g., zebra and
tiger stripes); in others, the allocation of skin components forms
patterns (e.g., human microtopography, hair follicles (HFs), and
fish scales). Murine tail skin serves as a robust model for examining
epidermal pattern formation8. The tail epidermis consists of scale
(parakeratotic) and interscale (orthokeratotic) areas, which are
arranged alternately. These scale and interscale areas are
distinguished by the expression of keratin 31 (K31) and keratin
10 (K10), respectively9. Label-retaining and lineage-tracing experi-
ments have revealed that K10+ interscale epidermis is slow-
cycling, whereas K31+ scale areas are fast-cycling. Two distinct SC
populations (Dlx1+ and Slc1a3+) give rise to interscale and scale
epidermis, respectively10, although it is unclear how these cell
populations are arranged into scale/interscale patterns.
The expression of epidermal SC niche proteins, including

integrins and COL17, shows alternate patterns in the human
epidermis, where their expression is enriched in the epidermis

facing the dermal protrusion but not in the epidermal rete
ridges11–13. Conversely, the scale/interscale patterns are absent in
β1 integrin-null tail epidermis14. These previous studies suggest
the involvement of SC niche proteins in epidermal pattern
formation. However, whether these SC niche proteins indeed
regulate the epidermal patterns and the mechanisms underlying
such regulation are unknown.
Here, we demonstrate that COL17, an SC niche protein7,15–17,

helps in the formation of proper epidermal patterns in mice and
humans. Interestingly, disturbed epidermal patterning through
COL17 deletion is independent of aberrant epidermal cell polarity,
but could involve wound-related skin changes.

MATERIAL AND METHODS
Animals
C57BL/6 (wild-type, WT) mice were purchased from Clea (Tokyo, Japan).
Col17a1−/−, K14-hCOL17 (h: human, a courtesy gift from Prof. Kim B Yancey),
hCOL17+; Col17a1−/−, K5-Cre;aPKCλΔE5/ΔE5 (aPKCλ eKO), and Prkcz−/−
(aPKCζ KO) were generated as previously described18–21. aPKCλΔE5/ΔE5 and
Prkcz+/− mice were used as aPKCλ eKO and aPKCζ KO controls, respectively.
aPKCλ eKO and aPKCλΔE5/ΔE5 littermates were generated by mating aPKCλ
eKO and aPKCλΔE5/ΔE5 mice. aPKCζ KO and Prkcz+/− littermates were
generated by mating aPKCζ KO and Prkcz+/− mice. Littermate Col17a1+/−
or Col17a1+/+ mice were used as Col17a1−/− or hCOL17+;Col17a1−/−
control. Col17a1−/−, Col17a1+/−, and Col17a1+/+ littermates were
generated by mating Col17a1+/− female and male mice. hCOL17+;
Col17a1−/−, Col17a1+/−, and Col17a1+/+ littermates were generated by
mating hCOL17+;Col17a1+/− and Col17a1+/− mice. K14-hCOL17 and WT
littermates were generated by mating K14-hCOL17 and WT mice. Female
mice were used for the wound-healing experiments on WT mice. Otherwise,
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sex-matched mice were used in each experiment. The institutional review
board of the Hokkaido University Graduate School of Medicine approved all
animal studies described below.

Cell culture
hTERT-immortalized human primary keratinocytes (KerCT; ATCC, Manassas,
VA, USA), and spontaneously transformed murine keratinocytes
(PAM212)22 were cultured in serum-free keratinocyte growth medium
(KGM; Lonza). The cells were transfected with 10 μM of human COL17A1
siRNA, murine Col17a1 siRNA or the control (Mock) (Silencer Select siRNAs,
Thermo Fisher Scientific, Waltham, MA, USA) using Lipofectamine 2000
(Thermo Fisher Scientific) and Opti-MEM (Thermo Fisher Scientific). The
cells were analyzed at 48 or 72 h after the knockdown procedure.

Antibodies
The following antibodies were used: polyclonal anti-K31 (Progen, hHa1),
polyclonal anti-K10 (BioLegend, Poly19054), polyclonal anti-K6 (BioLegend,
Poly19057), monoclonal anti-cytoplasmic COL17 (Abcam, Cambridge, MA,
USA, ab186415/EPR14758).

Quantitative RT-PCR (qRT-PCR)
RNA was isolated from the tail epidermis or cultured cells using the RNeasy
Mini kit (QIAGEN, Hilden, Germany), and cDNA was synthesized using the
SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific,
Waltham, MA, USA). qRT-PCR was carried out using the designated primers
and fast SYBR Green (Thermo Fisher Scientific) in a STEP-One Plus
sequence detection system (Applied Biosystems, Waltham, MA, USA).
The following primers were used for the analysis: Forward primer and

reverse primer are: murine Krt6a, CACGTTAAGAAGCAGTGTGCC and GCTCT
GAGCACGGGATTCT; murine Krt6b, AGGAGTGCAGGTTGAATGGTG and
AAAAAGAGAAGCGAGAGGACACA; murine Krt16, TCCCAGCTCAGCATGA
AAG and GAGCTGTGGATATTCTCGCCA; murine Krt17, AGACAGAGAACCGCT
ACTGC and CGGGTGGTCACAGGTTCTTTT; murine Col17a1, GATGGCACTG
AAGTCACCGA and TATCCATTGCTGGTGCTCCC; murine Cyc1, ATCGTTCG
AGCTAGGCATGG and GCCGGGAAAGTAAGGGTTGA; human KRT17, CAGAG
AACCGCTACTGCGTG and GTCACCGGTTCTTTCTTGTACTG; human KRT16,
GCTCAGCATGAAAGCATCCC and GACCTCGCGGGAAGAATAGG; human
KRT6A, AGTGCAGGCTGAATGGCGAA and TGGGACCGAGAGCTAGCAGA;
human KRT6B, TTCATCGACAAGGTGCGGT and CAGCTCCGAGTCCAGAC
GAC; human COL17A1, TCAACCAGAGGACGGAGTCA and TCGACTCCCCT
TGAGCAAAC; human RNA18SN1 (18S), GGCGCCCCCTCGATGCTCTTAG and
GCTCGGGCCTGCTTTGAACACTCT.

Immunofluorescence staining
Paraffin sections were deparaffinized and boiled in citrate or EDTA buffer
for 20min in a microwave oven. Frozen sections or cultured cells were
fixed in 4% paraformaldehyde (PFA) for 10min at room temperature (RT),
or cold acetone or used without fixation. After washing with PBS, sections
were treated with blocking buffer (0.5% fish skin gelatine, 5% goat serum,
4% BSA in PBS) for 1 h. The samples were incubated with primary
antibodies at 4 °C overnight and were subsequently incubated with
secondary antibodies conjugated with Alexa fluor 488, Alexa fluor 647, or
FITC at RT for 1 h. Nuclei were stained with 4′,6-diamidino-2-phenylin-
dole (DAPI). Images were obtained using confocal microscopy (FV1000,
Olympus, Tokyo, Japan; LSM-710, Zeiss, Germany) or fluorescence
microscopy (BZ-9000, Keyence, Osaka, Japan).

Whole-mount staining
Tail skin was incubated in 5mM EDTA/PBS on a shaker at 37 °C for 4 h to
separate the epidermis from the dermis. Epidermal sheets were fixed in 4%
PFA for 1 h at RT. After blocking, epidermal sheets were incubated with
primary antibodies overnight at RT, and then washed in 0.2% Tween/PBS.
Samples were subsequently incubated with secondary antibodies. After
washing, epidermal sheets were mounted on glass slides in Mowiol solution.
The images of whole-mount stained samples were obtained using FV1000
confocal laser scanning microscope (Olympus, Tokyo, Japan) or BZ-9000
fluorescence microscope (Keyence, Osaka, Japan). The size and shape of the
scales near the midline of the tail epidermis were analyzed using ImageJ
(NIH, Bethesda, MD, USA). When the scales of the littermates were compared,
the area, length, and width of the scales were normalized to the whole tail
equivalents to exclude the effects of the organismal size of each mouse.

Wound-healing experiments
The surface of the tail skin (epidermis and papillary dermis, approximately
5 × 4mm in size) was removed using a scalpel from 1-month-old (1MO) WT
mice or K14-hCOL17 mice to produce superficial skin wounds (Supple-
mentary Fig. 5A). The wounded skin was collected and analyzed when the
healing process was complete (typically 4–6 weeks after wounding) and at
a later time point (3 months after wounding).

Junctional epidermolysis bullosa (JEB) skin analysis
Photographs of the skin of a JEB patient23 who was compound heterozygous
for c.1179del (p.Ala394Leufs*9) and c.4159C>T (p.Gln1387*) in COL17A1
(NM_000494.4) were taken by TG-5 (Olympus). Three revertant mosaicism
spots and three adjacent diseased skin areas from the upper arm were
further analyzed as described below. Although the fingerprints have been
absent in other JEB patients with COL17A1 p.Arg1303Gln mutations24–26, the
patient in our study maintained his fingerprints. This discrepancy is probably
due to the difference of the COL17Amutations. The institutional review board
of the Hokkaido University Graduate School of Medicine approved all human
studies described above (ID: 13-043). The study was conducted according to
the principles of the Declaration of Helsinki. The participant provided written
informed consent.

Quantification of the skin microtopography
We selected several regions like the one surrounded by the red circle in the
left panels of Supplementary Fig. 6A, B for Diseased skin and Reverted skin.
We converted the image inside each circle to a grayscale image and
calculated the two-dimensional autocorrelation function27 (right panels in
Supplementary Fig. 6A, B). Using the two-dimensional autocorrelation
function, the characteristic direction of the epidermal pattern was detected
by determining the direction in which the autocorrelation in the range of a
distance less than 1mm is the largest. The one-dimensional autocorrela-
tion function was calculated (Supplementary Fig. 6C, D) in the direction
perpendicular to the characteristic direction, represented by the red lines
in the right panels in Supplementary Fig. 6A, B. The peak height (Δ) of the
one-dimensional autocorrelation function in the range of distance less
than 1mm was adopted to quantify the regularity of the pattern. In the
case where no peak was detected, the peak height was set to zero. The
above-mentioned image analyses were performed with ImageJ NIH
(Bethesda, MD, USA; https://imagej.nih.gov/ij/) by preparing a plug-in.

Statistical analysis
Statistical analysis was performed using GraphPad Prism (GraphPad
Software, La Jolla, CA, USA). p values were determined using Welch’s t
test, Student’s t test, or Mann–Whitney test. p values are indicated as *0.01
< p < 0.05, **0.001 < p < 0.01, ***0.0001 < p < 0.001, ****p < 0.0001. The
values are shown as violin plots. Violin plots show median (dashed line)
and quartiles (dotted line).

RESULTS
COL17 deficiency alters scale shape in the tail skin
We first characterized the scale/interscale patterning of Col17a1
−/−19 tail epidermis. We selected the time point of 1MO, when
the scales became mature8 (Supplementary Fig. 1). Immunofluor-
escence of the tail sections showed K10+ interscale and K31+
scale alternate patterns in both Col17a1−/− and controls (Fig. 1A;
Supplementary Fig. 2A). We then examined the scale shape by
whole skin imaging. We defined the length and width of a scale as
the diameter of the anterior–posterior (AP) and lateral-medial (LM)
axes, respectively (Fig. 1B). Since the length and width of whole
tail samples varied among the mice (Supplementary Table 1), we
normalized the scale length/width by dividing them by each
mouse tail length/width to exclude the effects of organismal size
in the analysis. Whole-mount imaging showed that the scale size
was smaller and the shape was more slender (shorter on the LM
axis) in the Col17a1−/− tail epidermis than in the littermate
controls (Fig. 1C–F, Supplementary Fig. 2B). The shorter scale
width in Col17a1−/− explains the smaller size of Col17a1−/−
scales because their length was comparable to that of the controls
(Fig. 1G, H). Although the basal cell number of maximum diameter
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on the AP axis was comparable between Col17a1−/− and control
scales, the cell number on the LM axis was smaller in Col17a1−/−
scales than in control scales (Supplementary Fig. 2C), implying the
altered alignment of the basal cells in Col17a1−/− scales. As the
C57BL/6 (WT) scale shape was wider at P14 (postnatal day 14) than
at 1MO (Fig. 1I), the slender scale shape in Col17a1−/− mice was
not due to the delayed development of the mice. Col17a1−/−
tails were generally smaller but not more slender than those of
controls (Supplementary Table 1), excluding the involvement of
organismal proportions in Col17a1−/− slender scales. Transgenic
rescue by the expression of hCOL17 under the keratin 14 (K14)
promoter in Col17a1−/− mice19 reversed the slender scale
phenotype (Fig. 2A–C). These data indicate that COL17 helps to
define the scale proportion.

aPKC deregulation does not phenocopy Col17a1−/− scale
shape
Atypical protein kinase C (aPKC) is a key regulator of epithelial
polarity28, and the epidermis expresses two aPKC isoforms (aPKCλ
and aPKCζ)29. The ablation of aPKCλ in the epidermis (K5-Cre;
aPKCλΔE5/ΔE5, aPKCλ eKO) and Col17a1−/− mice share premature
aging phenotypes such as gray hair and hair loss15,19,21,28. This
phenotypic similarity has been proposed to be a consequence of
the interaction between COL17 and the aPKC complex30. We
asked if the destabilized aPKC accounts for the slender scale shape

Fig. 1 Slender tail scales of Col17a1−/− mice. A Images showing K31 and K10 staining of Col17a1−/− and control tail skin samples at 1MO
(n= 4). Scale bar: 500 μm. B Schematic of distribution of scales in mouse tail epidermis. C K31 whole-mount staining images of Col17a1−/−
and littermate control tail epidermis at 1MO (n= 3). Scale bar: 500 μm. D Phase-contrast images of Col17a1−/− and littermate control tail
epidermis at 1MO (n= 4). Scale bar: 500 μm. Quantification of the size and shape of tail scales. Scale area (E), width/length (F), length (G), and
width (H) of Col17a1−/− and littermate control tail scales at 1MO are shown (n= 298 scales from three control and 413 scales from three
Col17a1−/− mice). I Width/length ratio of tail scales in P14 and 1MO WT mice (n= 148 scales from three P14 WT mice and 123 scales from
three 1MO WT mice). ****p < 0.0001, Welch’s t test.

Fig. 2 Restoration of the scale shape in Col17a1−/− tail epidermis
by human COL17 overexpression. A Whole-mount phase-contrast
imaging of hCOL17+;Col17a1−/− and littermate control (hCOL17−;
Col17a1+/+ or hCOL17−;Col17a1+/−) tail epidermis at 1MO (n= 3).
Scale bar: 500 μm. Quantification of the size and shape of tail scales.
Scale area (B) and width/length (C) of hCOL17+; Col17a1−/− and
littermate control tail scales at 1MO are shown (n= 266 scales from
three control and 359 scales from three hCOL17+; Col17a1−/−
mice). The raw data used for C are shown in Supplementary Table 2.
*0.01 < p < 0.05, Welch’s t-test.
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of Col17a1−/− mice (Fig. 3A–F). Whole-mount imaging showed
that the scale size was smaller in aPKCλ eKO than in littermate
controls, but its scale proportion (width/length ratio) was wider
than that of controls (Fig. 3A, C, D), which is in contrast to the
slender scales of Col17a1−/−mice (Fig. 2). aPKCζ knockout (aPKCζ
KO, Prkcz−/−) mice, which have no apparent skin phenotype20,
showed slightly larger scales, while the width/length ratio did not
exhibit significant change (Fig. 3B, E, F). These results indicate that
the aberrant cell polarity in Col17a1−/− epidermis17,30 is not
involved in altering the scale shape.

Expression of wound-induced keratins is pronounced in
Col17a1−/− tail epidermis
One of the factors that may affect scale shape is the cytoskeleton of
epidermal keratinocytes. Keratin 6, 16, and 17 (K6/K16/K17) are the
well-known keratins expressed upon physical injury. We reasoned
that these wound-induced keratins might be enriched in Col17a1
−/− epidermis at steady state because COL17 deficiency leads to
epidermolysis bullosa in humans31 and shows skin fragility in mice19.
Quantitative PCR revealed that the gene expression of these wound-
induced keratins was higher in Col17a1−/− tail epidermis (Fig. 4A).

Fig. 3 Small, but not slender, tail scales of aPKCλ eKO mice. A Whole-mount phase-contrast imaging of aPKCλ eKO and littermate control
tail epidermis (n= 3). Scale bar: 500 μm. B Whole-mount phase-contrast imaging of aPKCζ KO and littermate control tail epidermis (n= 3).
Scale bar: 500 μm. Quantification of the size and shape of tail scales. Scale area and width/length of aPKCλ eKO (C, D) and aPKCζ KO (E, F) tail
scales at 1MO are shown (n= 226 scales from three control mice and 357 scales from three aPKCλ eKO mice, n= 300 scales from three control
mice and 317 scales from three aPKCζ KO mice). The raw data used for F are shown in Supplementary Table 3. ****p < 0.0001, *0.01 < p < 0.05,
Welch’s t-test.

Fig. 4 Expression of wound-induced keratins in Col17a1−/− tail epidermis. A Gene expression of Krt6a, Krt6b, Krt16, and Krt17 in the tail
epidermis of Col17a1−/− and littermate control at 1MO (n= 7). *0.01 < p < 0.05, Student’s t-test. K6 staining of Col17a1−/− and littermate
control at P1 (B, n= 3), P14 (C, n= 3), and 1MO (D, n= 3). Scale bar: 100 μm.
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In addition to gene expression, immunofluorescence analyses
showed ectopic K6 expression in Col17a1−/− tail epidermis at
1MO. K6 expression in Col17a1−/− tail epidermis was also observed
during the developmental stages (P1 and P14; Fig. 4B–D). These data
indicate that keratin profiles are skewed towards the wound-
induced subsets in Col17a1−/− epidermis. In contrast, human or
murine cultured keratinocytes knocked down for COL17A1 or
Col17a1 did not result in the expression of wound-induced keratins
at the mRNA or protein level (Supplementary Figs. 3 and 4),
suggesting that this phenotype is dependent on the in vivo
setting. Rather, KRT16 and Krt6b expression was reduced in human
and murine knockdown experiments, respectively, for unknown
reasons.

Scale shape becomes slender after skin regeneration, and
COL17 overexpression rescues the phenotype
The expression of wound-induced keratins in Col17a1−/−
epidermis led us to ask whether wounding itself alters the tail
scale shape upon skin regeneration (Fig. 5A–F). The regenerated
tail epidermis (4 to 6 weeks after wounding) exhibited a more
slender scale shape than the non-lesional areas (Fig. 5A, C, D),
recapitulating the Col17a1−/− scale (Fig. 2). The slender scale
phenotype in the regenerated epidermis was not reversed
3 months after wounding (Supplementary Fig. 5B–D). To see that
additive COL17 prevents the alteration of the scale shape in the
regenerated epidermis, we utilized K14-hCOL17 transgenic mice,
which overexpress hCOL17 under the K14 promoter. The scale
shape of the regenerated K14-hCOL17 skin was not as slender as
that of the regenerated WT skin (Fig. 5B, E, F). These results
suggest that COL17 prevents wound-induced scale deformation.

COL17 influences human skin microtopography
We finally asked whether the presence or absence of COL17 also
affects epidermal patterning in humans. Although scale/interscale
epidermal patterns in mouse tails are not conserved, skin surface
patterns consisting of grooves and ridges are visible in humans.
We took advantage of the revertant mosaicism in epidermolysis
bullosa (EB), in which the mutated genes are corrected
spontaneously32,33. We compared COL17-negative (diseased)
and COL17-positive (revertant) skin from a junctional EB (JEB)
patient with COL17A1 mutations23 (Fig. 6A–C, Supplementary
Fig. 6). The diseased skin surface appeared coarse, while the

revertant skin was smooth (Fig. 6B). We calculated the auto-
correlation functions of these skin images to quantify the skin
microtopography and found that the diseased skin shows a
distinct pattern from the revertant skin (Fig. 6D). These findings
demonstrate that COL17 is a deterministic factor of epidermal
patterning in mice and humans.

DISCUSSION
COL17 is a hemidesmosomal protein that anchors basal keratino-
cytes to the dermis. COL17 stabilizes hemidesmosomes by
binding to various basement membrane zone proteins including
BP23034,35, α6 integrin36, β4 integrin35,37–39, plectin35,40, laminin-
33225,41, and type IV collagen42,43. As a consequence, COL17
deficiency results in epidermolysis bullosa19,31. Recently, COL17
has also been highlighted as an SC niche protein of HFs and
epidermis, and its deficiency destabilizes epithelial SC mainte-
nance7,15–17. Our study provides new insights into COL17 biology.
Col17a1−/−mice have slender tail scales and are characterized by
the expression of wound-induced keratins in the epidermis. In line
with this, the regenerated epidermis after wounding shows
slender tail scales. Human COL17 overexpression reverses the
alteration of scale shapes upon wounding (Fig. 7).
Epidermal cell polarity regulates symmetrical and asymmetrical

cell division of basal keratinocytes44–46 and is regulated by the
aPKC complex47–49. Increased asymmetrical cell division in aPKCλ
eKO epidermis28 and possible SC depletion explain the smaller
scales in aPKCλ eKO mice (Fig. 3). Although COL17 interacts with
the aPKC complex30 and helps maintain epidermal cell polar-
ity17,30, Col17a1−/− did not exhibit proportionally small scales as
seen in aPKCλ eKO mice. This phenotypical difference indicates
that the slender scale phenotype in Col17a1−/− mice is
independent of aberrant cell polarity.
A limitation of our study is that it does not explain which

contributes more to the altered epidermal patterns in Col17a1−/−
mice: epidermal SC instability or weakened epidermal-dermal
adhesion. As the HF abnormality of Col17a1−/− mice becomes
apparent at 3 months old15, it is not very likely that HFs are
involved in the phenotypes of epidermal patterns at 1 month old
in our study. Furthermore, the hard palate in the oral mucosa,
where HFs are absent, shows an epithelial pattern of fast- and
slow-cycling SCs50, recapitulating the epidermal pattern of the tail

Fig. 5 Slender tail scales after skin regeneration and COL17 transgenic rescue. Whole-mount phase-contrast imaging of WT (A) and K14-
hCOL17 (B) tail epidermis 4–6 weeks after wounding (n= 4 (WT) and 6 (K14-hCOL17), respectively). Scale bar: 500 μm. Quantification of the
size and shape of tail scales. Scale area and width/length of WT (C, D) and K14-hCOL17 (E, F) tail scales after skin regeneration are shown (n=
542 scales from unwounded areas and 467 scales from regenerated areas from four WT mice, n= 424 scales from unwounded areas and
440 scales from regenerated areas from six K14-hCOL17 mice). ****p < 0.0001, Welch’s t-test.
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skin. Thus, HFs might not be essential for epithelial pattern
formation.
Among various skin patterns, fingerprints, also called derma-

toglyphics, are the most well characterized in humans. Finger-
prints show an alternate pattern of epidermal ridges and grooves.
Loss of fingerprints has been described in EB patients, including
Kindler syndrome51,52 and JEB with COL17A1 p.Arg1303Gln
mutation24–26. Our study has also demonstrated that the presence
of COL17 alters human skin microtopography (Fig. 6). These facts
corroborate the role of COL17 in epidermal patterning and
highlight COL17 as a therapeutic target for wound-induced skin
deformations.
Human skin microtopography is not identical to mouse tail scale

patterns because humans lost their tails after evolutionarily
branching off from other primates. It has not been determined
whether human skin ridges or grooves correspond to the fast- or
slow-cycling areas that characterize mouse tails. However, the
data that COL17 absence disturbs proper skin patterning in both
humans and mice point to the involvement of COL17 in regulating
skin surface texture across species.
Wound repair in mouse back skin requires wound contraction53;

however, the contribution of wound contraction has been
regarded as minimal in the tail skin54. Recent studies suggest
that two-thirds of tail wound healing is due to epithelial

regeneration, while wound contraction explains the remainder55.
We believe that wound contraction does not play a major role in
the slender scale phenotype in the regenerated tail skin (Fig. 5) for
the following reasons: (1) the scale shape in the regenerated skin
would become proportionally small rather than slender if the
wound contraction affected this phenotype, and (2) the slender
scale phenotype in the regenerated skin is rescued by K14-driven
human COL17 overexpression, which might not influence wound
contraction because the transgene expression is confined to the
epidermis. The slender scales in Col17a1−/− mice most likely
represent wound-related skin changes that involve the expression
of wound-induced keratins in Col17a1−/− epidermis (Fig. 4).
However, the mechanisms by which wound-related skin changes
affect epidermal patterning need further investigation.
In conclusion, our study highlights the unrecognized role of

COL17 in epidermal patterning. We propose that COL17 modulation
can be utilized to prevent epidermal deformation upon wounding.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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