Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility

Abstract

Cell-free DNA (cfDNA) profiling as liquid biopsy has proven value in adult-onset malignancies, serving as a patient-specific surrogate for residual disease and providing a non-invasive tool for serial interrogation of tumor genomics. However, its application in neoplasms of the central nervous system (CNS) has not been as extensively studied. Unique considerations and methodological challenges exist, which need to be addressed before cfDNA studies can be incorporated as a clinical assay for primary CNS diseases. Here, we review the current status of applying cfDNA analysis in patients with CNS tumors, with special attention to diagnosis in pediatric patients. Technical concerns, evidence for utility, and potential developments are discussed.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of technical considerations.

References

  1. Steliarova-Foucher, E., Colombet, M., Ries, L. A., Moreno, F., Dolya, A. & Bray, F. et al. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet. Oncol. 18, 719–731 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Gajjar, A., Bowers, D. C., Karajannis, M. A., Leary, S., Witt, H. & Gottardo, N. G. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J. Clin. Oncol. 33, 2986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pollack, I. F. Multidisciplinary management of childhood brain tumors: a review of outcomes, recent advances, and challenges: A review. J. Neurosurg. Pediatr. 8, 135–148 (2011).

    PubMed  Google Scholar 

  4. Pui, C.-H., Gajjar, A. J., Kane, J. R., Qaddoumi, I. A. & Pappo, A. S. Challenging issues in pediatric oncology. Nature. Rev. Clin. Oncol. 8, 540–549 (2011).

    Google Scholar 

  5. Campana, D. & Pui, C.-H. Minimal residual disease–guided therapy in childhood acute lymphoblastic leukemia. Blood. 129, 1913–1918 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravandi, F., Walter, R. B. & Freeman, S. D. Evaluating measurable residual disease in acute myeloid leukemia. Blood. Adv. 2, 1356–1366 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moreira, D. C. & Gajjar, A. Precision medicine for pediatric central nervous system tumors. Expert Rev. Precis. Med. Drug. Dev. 4, 55–57 (2019).

    Google Scholar 

  8. Capper, D., Jones, D. T., Sill, M., Hovestadt, V., Schrimpf, D. & Sturm, D. et al. DNA methylation-based classification of central nervous system tumours. Nature. 555, 469–474 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sturm, D., Orr, B. A., Toprak, U. H., Hovestadt, V., Jones, D. T. & Capper, D. et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 164, 1060–1072 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar, R., Liu, A. P., Orr, B. A., Northcott, P. A. & Robinson, G. W. Advances in the classification of pediatric brain tumors through DNA methylation profiling: From research tool to frontline diagnostic. Cancer. 124, 4168–4180 (2018).

    PubMed  Google Scholar 

  11. Ramaswamy, V., Remke, M., Bouffet, E., Bailey, S., Clifford, S. C. & Doz, F. et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta. Neuropathol. 131, 821–831 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor, M. D., Northcott, P. A., Korshunov, A., Remke, M., Cho, Y.-J. & Clifford, S. C. et al. Molecular subgroups of medulloblastoma: the current consensus. Acta. Neuropathol. 123, 465–472 (2012).

    CAS  PubMed  Google Scholar 

  13. Northcott, P. A., Buchhalter, I., Morrissy, A. S., Hovestadt, V., Weischenfeldt, J. & Ehrenberger, T. et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 547, 311–317 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryall, S., Zapotocky, M., Fukuoka, K., Nobre, L., Stucklin, A. G. & Bennett, J. et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer. Cell. 37, 569–583. e565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mackay, A., Burford, A., Carvalho, D., Izquierdo, E., Fazal-Salom, J. & Taylor, K. R. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer. Cell. 32, 520–537. e525 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Johann, P. D., Erkek, S., Zapatka, M., Kerl, K., Buchhalter, I. & Hovestadt, V. et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer. Cell. 29, 379–393 (2016).

    CAS  PubMed  Google Scholar 

  17. Pajtler, K. W., Mack, S. C., Ramaswamy, V., Smith, C. A., Witt, H. & Smith, A. et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta. Neuropathol. 133, 5–12 (2017).

    CAS  PubMed  Google Scholar 

  18. Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A. & Figarella-Branger, D. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro. Oncol. 23, 1231–1251 (2021).

    CAS  PubMed  Google Scholar 

  19. Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nature. Cancer. 1, 276–290 (2020).

    PubMed  Google Scholar 

  20. Pantel, K. & Alix-Panabières, C. Real-time liquid biopsy in cancer patients: Fact or fiction? Cancer. Res. 73, 6384–6388 (2013).

    CAS  PubMed  Google Scholar 

  21. Pantel, K. & Alix-Panabières, C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nature. Rev. Clin. Oncol. 16, 409–424 (2019).

    CAS  Google Scholar 

  22. Alix-Panabieres, C. The future of liquid biopsy. Nature. 579, S9–S9 (2020).

    CAS  PubMed  Google Scholar 

  23. Han, D. S. C., Ni, M., Chan, R. W. Y., Chan, V. W. H., Lui, K. O. & Chiu, R. W. K. et al. The Biology of Cell-free DNA Fragmentation and the Roles of DNASE1, DNASE1L3, and DFFB. Am. J. Hum. Genet. 106, 202–214 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Vaart, M. & Pretorius, P. J. The origin of circulating free DNA. Clin. Chem. 53, 2215 (2007).

    PubMed  Google Scholar 

  25. Jahr, S., Hentze, H., Englisch, S., Hardt, D., Fackelmayer, F. O. & Hesch, R. D. et al. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer. Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  26. Lui, Y. Y., Chik, K.-W., Chiu, R. W., Ho, C.-Y., Lam, C. W. & Lo, Y. D. Predominant hematopoietic origin of Cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 48, 421–427 (2002).

    CAS  PubMed  Google Scholar 

  27. Mandel, P. & Metais, P. Nuclear acids in human blood plasma. C. R. Seances. Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  Google Scholar 

  28. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Google Scholar 

  29. Davis, G. L. Jr & Davis Iv, J. S. Detection of circulating DNA by counterimmunoelectrophoresis (cie). Arthritis. Rheum. 16, 52–58 (1973).

    CAS  PubMed  Google Scholar 

  30. Lo, Y. M., Rainer, T. H., Chan, L. Y., Hjelm, N. M. & Cocks, R. A. Plasma DNA as a prognostic marker in trauma patients. Clin. Chem. 46, 319–323 (2000).

    CAS  PubMed  Google Scholar 

  31. Rhodes, A., Wort, S. J., Thomas, H., Collinson, P. & Bennett, E. D. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit. Care. 10, 1–7 (2006).

    Google Scholar 

  32. Leon, S., Shapiro, B., Sklaroff, D. & Yaros, M. Free DNA in the serum of cancer patients and the effect of therapy. Cancer. Res. 37, 646–650 (1977).

    CAS  PubMed  Google Scholar 

  33. Vasioukhin, V., Anker, P., Maurice, P., Lyautey, J., Lederrey, C. & Stroun, M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 86, 774–779 (1994).

    CAS  PubMed  Google Scholar 

  34. Sorenson, G. D., Pribish, D. M., Valone, F. H., Memoli, V. A., Bzik, D. J. & Yao, S. L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer. Epidemiol. Biomarkers. Prev. 3, 67–71 (1994).

    CAS  PubMed  Google Scholar 

  35. Anker, P., Lefort, F., Vasioukhin, V., Lyautey, J., Lederrey, C. & Chen, X. Q. et al. K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology. 112, 1114–1120 (1997).

    CAS  PubMed  Google Scholar 

  36. Lo, Y. M., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L. & Redman, C. W. et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 350, 485–487 (1997).

    CAS  PubMed  Google Scholar 

  37. Bianchi, D. W., Parker, R. L., Wentworth, J., Madankumar, R., Saffer, C. & Das, A. F. et al. DNA sequencing versus standard prenatal aneuploidy screening. N. Engl. J. Med. 370, 799–808 (2014).

    CAS  PubMed  Google Scholar 

  38. Blauwkamp, T. A., Thair, S., Rosen, M. J., Blair, L., Lindner, M. S. & Vilfan, I. D. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 4, 663–6674 (2019).

    CAS  PubMed  Google Scholar 

  39. Goggin, K. P., Gonzalez-Pena, V., Inaba, Y., Allison, K. J., Hong, D. K. & Ahmed, A. A. et al. Evaluation of plasma microbial Cell-Free DNA sequencing to predict bloodstream infection in pediatric patients with relapsed or refractory cancer. JAMA. Oncol. 6, 552–556 (2020).

    PubMed  Google Scholar 

  40. Bustamante, A., Mancha, F., Macher, H. C., García-Berrocoso, T., Giralt, D. & Ribó, M. et al. Circulating cell-free DNA is a predictor of short-term neurological outcome in stroke patients treated with intravenous thrombolysis. J. Circ. Biomark. 5, 1849454416668791 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Polina, I. A., Ilatovskaya, D. V. & DeLeon-Pennell, K. Y. Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clinica. Chimica. Acta. 503, 145–150 (2020).

    CAS  Google Scholar 

  42. Zemmour, H., Planer, D., Magenheim, J., Moss, J., Neiman, D. & Gilon, D. et al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat. Commun. 9, 1–9 (2018).

    CAS  Google Scholar 

  43. Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C.-H. & Ding, L. et al. The pediatric cancer genome project. Nat. Genet. 44, 619–622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19, A68 (2015).

    Google Scholar 

  45. Pantel, K. & Alix-Panabières, C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 16, 398–406 (2010).

    PubMed  Google Scholar 

  46. Corcoran, R. B. & Chabner, B. A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 379, 1754–1765 (2018).

    CAS  PubMed  Google Scholar 

  47. Bettegowda, C., Sausen, M., Leary, R. J., Kinde, I., Wang, Y. & Agrawal, N. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224–224ra224 (2014).

    Google Scholar 

  48. Christensen, E., Birkenkamp-Demtröder, K., Sethi, H., Shchegrova, S., Salari, R. & Nordentoft, I. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J. Clin. Oncol. 37, 1547–1557 (2019).

    CAS  PubMed  Google Scholar 

  49. Vandekerkhove, G., Lavoie, J.-M., Annala, M., Murtha, A. J., Sundahl, N. & Walz, S. et al. Plasma ctDNA is a tumor tissue surrogate and enables clinical-genomic stratification of metastatic bladder cancer. Nat. Commun. 12, 184 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Leal, A., van Grieken, N. C., Palsgrove, D. N., Phallen, J., Medina, J. E. & Hruban, C. et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  51. Bratman, S. V., Yang, S. C., Iafolla, M. A., Liu, Z., Hansen, A. R. & Bedard, P. L. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nature. Cancer. 1, 873–881 (2020).

    PubMed  Google Scholar 

  52. Bordi, P., Del, Re,M., Danesi, R. & Tiseo, M. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Transl. Lung. Cancer. Res. 4, 584 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paci, M., Maramotti, S., Bellesia, E., Formisano, D., Albertazzi, L. & Ricchetti, T. et al. Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer. 64, 92–97 (2009).

    PubMed  Google Scholar 

  54. Sozzi, G., Conte, D., Leon, M., Cirincione, R., Roz, L. & Ratcliffe, C. et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol. 21, 3902–3908 (2003).

    CAS  PubMed  Google Scholar 

  55. Bando, H., Kagawa, Y., Kato, T., Akagi, K., Denda, T. & Nishina, T. et al. A multicentre, prospective study of plasma circulating tumour DNA test for detecting RAS mutation in patients with metastatic colorectal cancer. Br. J. Cancer. 120, 982–986 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryan, B., Lefort, F., McManus, R., Daly, J., Keeling, P. & Weir, D. et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut 52, 101–108 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Salvianti, F., Gelmini, S., Mancini, I., Pazzagli, M., Pillozzi, S., Giommoni, E. et al. Circulating tumour cells and cell-free DNA as a prognostic factor in metastatic colorectal cancer: the OMITERC prospective study. Br. J. Cancer. 125, 94–100 (2021).

    CAS  PubMed  Google Scholar 

  58. Darrigues, L., Pierga, J.-Y., Bernard-Tessier, A., Bièche, I., Silveira, A. B. & Michel, M. et al. Circulating tumor DNA as a dynamic biomarker of response to palbociclib and fulvestrant in metastatic breast cancer patients. Breast. Cancer. Res. 23, 1–10 (2021).

    Google Scholar 

  59. Parsons, H. A., Rhoades, J., Reed, S. C., Gydush, G., Ram, P. & Exman, P. et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin. Cancer Res. 26, 2556–2564 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Visvanathan, K., Fackler, M. S., Zhang, Z., Lopez-Bujanda, Z. A., Jeter, S. C. & Sokoll, L. J. et al. Monitoring of serum DNA methylation as an early independent marker of response and survival in metastatic breast cancer: TBCRC 005 prospective biomarker study. J. Clin. Oncol. 35, 751 (2017).

    CAS  PubMed  Google Scholar 

  61. Iqbal, M., Roberts, A., Starr, J., Mody, K. & Kasi, P. M. Feasibility and clinical value of circulating tumor DNA testing in patients with gastric adenocarcinomas. J. Gastrointest. Oncol. 10, 400 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Wang, H., Li, B., Liu, Z., Gong, J., Shao, L. & Ren, J. et al. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer. Eur. J. Cancer. 88, 92–100 (2018).

    CAS  PubMed  Google Scholar 

  63. Wu, Y.-L., Lee, V., Liam, C.-K., Lu, S., Park, K. & Srimuninnimit, V. et al. Clinical utility of a blood-based EGFR mutation test in patients receiving first-line erlotinib therapy in the ENSURE, FASTACT-2, and ASPIRATION studies. Lung Cancer 126, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  64. Aravanis, A. M., Lee, M. & Klausner, R. D. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell. 168, 571–574 (2017).

    CAS  PubMed  Google Scholar 

  65. Fiala, C. & Diamandis, E. P. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 16, 1–10 (2018).

    Google Scholar 

  66. Phallen, J., Sausen, M., Adleff, V., Leal, A., Hruban, C., White, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Pagès, M., Rotem, D., Gydush, G., Reed, S., Rhoades, J. & Ha, G. et al. Gene-07. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro. Oncol. 21, ii82 (2019).

    PubMed Central  Google Scholar 

  68. Izquierdo, E., Proszek, P., Pericoli, G., Temelso, S., Clarke, M., Carvalho, DM. et al. Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neuro. Oncol. Adv. 3, vdab013 (2021).

    Google Scholar 

  69. De Mattos-Arruda, L., Mayor, R., Ng, C. K., Weigelt, B., Martínez-Ricarte, F. & Torrejon, D. et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6, 1–6 (2015).

    Google Scholar 

  70. Mouliere, F., Smith, C. G., Heider, K., Su, J., van der Pol, Y. & Thompson, M. et al. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol. Med. 13, e12881 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bale, T. A., Yang, S. R., Solomon, J. P., Nafa, K., Middha, S. & Casanova, J. et al. Clinical experience of cerebrospinal fluid-based liquid biopsy demonstrates superiority of cell-free DNA over cell pellet genomic DNA for molecular profiling. J. Mol. Diagn. 23, 742–752 (2021).

    CAS  PubMed  Google Scholar 

  72. Gajjar, A., Fouladi, M., Walter, A. W., Thompson, S. J., Reardon, D. A. & Merchant, T. E. et al. Comparison of lumbar and shunt cerebrospinal fluid specimens for cytologic detection of leptomeningeal disease in pediatric patients with brain tumors. J. Clin. Oncol. 17, 1825–1828 (1999).

    CAS  PubMed  Google Scholar 

  73. Wang, Y., Springer, S., Zhang, M., McMahon, K. W., Kinde, I. & Dobbyn, L. et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc. Natl. Acad. Sci. U.S.A 112, 9704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shah, M., Takayasu, T., Zorofchian Moghadamtousi, S., Arevalo, O., Chen, M. & Lan, C. et al. Evaluation of the oncomine pan-cancer cell-free assay for analyzing circulating tumor DNA in the cerebrospinal fluid in patients with central nervous system malignancies. J. Mol. Diagn. 23, 171–180 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Salkeni, M. A., Zarzour, A., Ansay, T. Y., McPherson, C. M., Warnick, R. E. & Rixe, O. et al. Detection of EGFRvIII mutant DNA in the peripheral blood of brain tumor patients. J Neurooncol. 115, 27–35 (2013).

    CAS  PubMed  Google Scholar 

  76. Schwaederle, M., Husain, H., Fanta, P. T., Piccioni, D. E., Kesari, S. & Schwab, R. B. et al. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay. Oncotarget. 7, 9707–9717 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Mouliere, F., Mair, R., Chandrananda, D., Marass, F., Smith, C. G. & Su, J. et al. Detection of cell‐free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients. EMBO Mol. Med. 10, e9323 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Miller, A. M., Shah, R. H., Pentsova, E. I., Pourmaleki, M., Briggs, S. & Distefano, N. et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 565, 654–658 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Martínez-Ricarte, F., Mayor, R., Martínez-Sáez, E., Rubio-Pérez, C., Pineda, E. & Cordero, E. et al. Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from Cerebrospinal Fluid. Clin. Cancer. Res. 24, 2812–2819 (2018).

    PubMed  Google Scholar 

  80. Maass, K. K., Schad, P. S., Finster, A. M. E., Puranachot, P., Rosing, F. & Wedig, T. et al. From sampling to sequencing: A liquid biopsy pre-analytic workflow to maximize multi-layer genomic information from a single tube. Cancers. 13, 3002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Andersson, D., Kristiansson, H., Kubista, M. & Ståhlberg, A. Ultrasensitive circulating tumor DNA analysis enables precision medicine: Experimental workflow considerations. Expert Rev. Mol. Diagn. 21, 299–310 (2021).

    CAS  PubMed  Google Scholar 

  82. Johansson, G., Andersson, D., Filges, S., Li, J., Muth, A. & Godfrey, T. E. et al. Considerations and quality controls when analyzing cell-free tumor DNA. Biomol Detect Quantif 17, 100078 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Meddeb, R., Pisareva, E. & Thierry, A. R. Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. Clin. Chem. 65, 623–633 (2019).

    CAS  PubMed  Google Scholar 

  84. Greytak, S. R., Engel, K. B., Parpart-Li, S., Murtaza, M., Bronkhorst, A. J. & Pertile, M. D. et al. Harmonizing cell-free DNA collection and processing practices through evidence-based guidance. Clin. Cancer. Res. 26, 3104–3109 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pérez-Barrios, C., Nieto-Alcolado, I., Torrente, M., Jiménez-Sánchez, C., Calvo, V. & Gutierrez-Sanz, L. et al. Comparison of methods for circulating cell-free DNA isolation using blood from cancer patients: Impact on biomarker testing. Transl. Lung. Cancer. Res. 5, 665–672 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Diefenbach, R. J., Lee, J. H., Kefford, R. F. & Rizos, H. Evaluation of commercial kits for purification of circulating free DNA. Cancer. Genet. 228229, 21–27 (2018).

    PubMed  Google Scholar 

  87. Iqbal, S., Vishnubhatla, S., Raina, V., Sharma, S., Gogia, A. & Deo, S. S. et al. Circulating cell-free DNA and its integrity as a prognostic marker for breast cancer. Springerplus 4, 1–6 (2015).

    CAS  Google Scholar 

  88. Deveson, IW., Gong, B., Lai, K., LoCoco, JS., Richmond, TA., Schageman, J. et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat. Biotechnol. 39, 1115–1128 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Miller, K. D., Ostrom, Q. T., Kruchko, C., Patil, N., Tihan, T. & Cioffi, G. et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 71, 381–406 (2021).

    PubMed  Google Scholar 

  90. Huang, T. Y., Piunti, A., Lulla, R. R., Qi, J., Horbinski, C. M. & Tomita, T. et al. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta. Neuropathol. Commun. 5, 28 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Panditharatna, E., Kilburn, L. B., Aboian, M. S., Kambhampati, M., Gordish-Dressman, H. & Magge, S. N. et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin. Cancer. Res. 24, 5850–5859 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pan, C., Diplas, B. H., Chen, X., Wu, Y., Xiao, X. & Jiang, L. et al. Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta. Neuropathol. 137, 297–306 (2019).

    CAS  PubMed  Google Scholar 

  93. Piccioni, D. E., Achrol, A. S., Kiedrowski, L. A., Banks, K. C., Boucher, N. & Barkhoudarian, G. et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS Oncol. 8, Cns34 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. García-Romero, N., Carrión-Navarro, J., Areal-Hidalgo, P., Ortiz de Mendivil, A., Asensi-Puig, A. & Madurga, R. et al. BRAF V600E detection in liquid biopsies from pediatric central nervous system tumors. Cancers. 12, 66 (2020).

    Google Scholar 

  95. Takayasu, T., Shah, M., Dono, A., Yan, Y., Borkar, R. & Putluri, N. et al. Cerebrospinal fluid ctDNA and metabolites are informative biomarkers for the evaluation of CNS germ cell tumors. Scientific. Rep. 10, 1–9 (2020).

    Google Scholar 

  96. Li, J., Zhao, S., Lee, M., Yin, Y., Li, J., Zhou, Y. et al. Reliable tumor detection by whole-genome methylation sequencing of cell-free DNA in cerebrospinal fluid of pediatric medulloblastoma. Sci. Adv. 6, eabb5427 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Escudero, L., Llort, A., Arias, A., Diaz-Navarro, A., Martínez-Ricarte, F. & Rubio-Perez, C. et al. Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nat. Commun. 11, 5376 (2020).

    PubMed  PubMed Central  Google Scholar 

  98. Sun, Y., Li, M., Ren, S., Liu, Y., Zhang, J. & Li, S. et al. Exploring genetic alterations in circulating tumor DNA from cerebrospinal fluid of pediatric medulloblastoma. Scientific. Rep. 11, 5638 (2021).

    CAS  Google Scholar 

  99. Chiang, J., Diaz, A. K., Makepeace, L., Li, X., Han, Y. & Li, Y. et al. Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPG. Acta. Neuropathol. Commun. 8, 57 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schwartzentruber, J., Korshunov, A., Liu, X.-Y., Jones, D. T., Pfaff, E. & Jacob, K. et al. Driver mutations in histone H3. 3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 482, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  101. Wu, G., Broniscer, A., McEachron, T. A., Lu, C., Paugh, B. S. & Becksfort, J. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stallard, S., Savelieff, M. G., Wierzbicki, K., Mullan, B., Miklja, Z. & Bruzek, A. et al. CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response. Acta. Neuropathol. Commun. 6, 80 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Li, D., Bonner, E. R., Wierzbicki, K., Panditharatna, E., Huang, T. & Lulla, R. et al. Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR. Scientific. Rep. 11, 5098 (2021).

    CAS  Google Scholar 

  104. Hoffman, L. M., DeWire, M., Ryall, S., Buczkowicz, P., Leach, J. & Miles, L. et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol. Commun. 4, 1 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Arunachalam, S., Brady, S. W., Ma, X., Szlachta, K., Mulder, H. & Easton, J. et al. Abstract 3047: Spatial heterogeneity in diffuse intrinsic pontine gliomas treated with a PDGFR inhibitor. Cancer. Res. 81, 3047–3047 (2021).

    Google Scholar 

  106. Mueller, S., Jain, P., Liang, W. S., Kilburn, L., Kline, C. & Gupta, N. et al. A pilot precision medicine trial for children with diffuse intrinsic pontine glioma—PNOC003: A report from the Pacific pediatric neuro-oncology consortium. Int. J. Cancer. 145, 1889–1901 (2019).

    CAS  PubMed  Google Scholar 

  107. Northcott, P. A., Robinson, G. W., Kratz, C. P., Mabbott, D. J., Pomeroy, S. L. & Clifford, S. C. et al. Medulloblastoma. Nat. Rev. Dis. Primers 5, 11 (2019).

    PubMed  Google Scholar 

  108. Liu, A. P. Y., Smith, K. S., Kumar, R., Paul, L., Bihannic, L., Lin, T. et al. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer. Cell. 39, 1519–1530 (2021).

    CAS  PubMed  Google Scholar 

  109. Van Paemel, R., De Koker, A., Vandeputte, C., van Zogchel, L., Lammens, T. & Laureys, G. et al. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: A proof-of-principle study. Epigenetics. 16, 196–208 (2021).

    PubMed  Google Scholar 

  110. Miller, A., Szalontay, L., Bouvier, N., Ahmed, H., Hill, K. & Rafailov, J. et al. EPCT-21. Next-generation sequencing of cerebrospinal fluid for clinical molecular diagnostics in adolescent and young adult (AYA) brain tumor patients. Neuro. Oncol. 23, i51–i51 (2021).

    PubMed Central  Google Scholar 

  111. Karvonen, K., Lockwood, C., Cole, B., Stasi, S., Stevens, J. & Hauptman, J. et al. GENE-17. Tumor-derived cell-free DNA may be frequently detected by clinical targeted sequencing of cerebrospinal fluid in children with brain tumors. Neuro. Oncol. 21, ii84–ii85 (2019).

    PubMed Central  Google Scholar 

  112. Meng, Y., Pople, CB., Suppiah, S., Llinas, M., Huang, Y., Sahgal, A. et al. MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors. Neuro Oncol. 23, 1789–1797 (2021).

    PubMed  PubMed Central  Google Scholar 

  113. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 164, 57–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Waldron, D. A nucleosome footprint reveals the source of cfDNA. Nat. Rev. Genet. 17, 125–125 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Vani Shanker, Ph.D., ELS, Department of Scientific Editing, St. Jude Children’s Research Hospital, for reviewing the manuscript.

Funding

This work is supported by the Health and Medical Research Fund (Commissioned Paediatric Research at Hong Kong Children’s Hospital, PR-HKU-6), Food and Health Bureau, Hong Kong SAR Government.

Author information

Authors and Affiliations

Authors

Contributions

A.L., P.A.N., and A.G. conceptualized the study, A.L. performed the literature search and initial drafting; all authors critically reviewed and revised the manuscript; all authors read and approved the final paper.

Corresponding author

Correspondence to Anthony Pak-Yin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, A.PY., Northcott, P.A., Robinson, G.W. et al. Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility. Lab Invest 102, 134–142 (2022). https://doi.org/10.1038/s41374-021-00719-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41374-021-00719-x

Search

Quick links