Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LncRNA GAS5 regulates migration and epithelial-to-mesenchymal transition in lens epithelial cells via the miR-204-3p/TGFBR1 axis

Abstract

Diabetic cataract (DC) is a major ocular complication secondary to diabetes mellitus. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is an important event in DC progression. Long non-coding RNAs (lncRNAs) and microRNAs are involved in various biological processes and disorders. The aim of this study was to investigate the roles of lncRNA growth arrest-specific transcript 5 (GAS5) and microRNA-204-3p (miR-204-3p) deregulation in the pathogenic mechanism of high glucose (HG)-stimulated LECs. The results show that GAS5 was up-regulated, whereas miR-204-3p was down-regulated in anterior lens capsule tissues of DC patients and in HG-treated LECs compared to their controls, respectively. Functional experiments suggest that the lentivirus-mediated depletion of GAS5, as well as overexpression of miR-204-3p, suppressed migration and EMT in HG-treated LECs. Further mechanistic studies revealed that lncRNA GAS5/miR-204-3p/type 1 receptor of transforming growth factor-beta (TGFBR1) has a regulatory role in the process. Collectively, we demonstrated that dysregulation of GAS5 affects lens epithelial cell migration and EMT under HG conditions via the miR-204-3p/TGFBR1 axis. The current findings may provide new insights into the molecular mechanisms of DC development.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The expression of lncRNA GAS5 is enhanced in the anterior lens capsules of DC patients and in HG-treated LECs.
Fig. 2: Knockdown of lncRNA GAS5 inhibits migration and EMT in HG-treated LECs.
Fig. 3: MiR-204-3p is a target miRNA of lncRNA GAS5.
Fig. 4: MiR-204-3p inhibits migration and EMT in HG-treated LECs.
Fig. 5: MiR-204-3p deficiency reverses the effect of GAS5 knockdown on migration and EMT in HG-treated LECs.
Fig. 6: TGFBR1 is a target gene of miR-204-3p.
Fig. 7: TGFBR1 overexpression reverses the effect of miR-204-3p on migration and EMT in HG-treated LECs.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. De Bruyne S., et al. A potential role for fructosamine-3-kinase in cataract treatment. Int. J. Mol. Sci. 22, 3841 (2021).

  2. Peterson, S. R., Silva, P. A., Murtha, T. J. & Sun, J. K. Cataract surgery in patients with diabetes: management strategies. Semin. Ophthalmol. 33, 75–82 (2018).

    PubMed  Google Scholar 

  3. Obrosova, I. G., Chung, S. S. & Kador, P. F. Diabetic cataracts: mechanisms and management. Diabetes Metab. Res. Rev. 26, 172–180 (2010).

    CAS  PubMed  Google Scholar 

  4. Šimunović, M. et al. Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus. Int. J. Endocrinol. 2018, 6763586 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Hashim, Z. & Zarina, S. Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract. Age (Dordr) 33, 377–384 (2011).

    CAS  Google Scholar 

  6. Chancellor, J. et al. Intraoperative complications and visual outcomes of cataract surgery in diabetes mellitus: a multicenter database study. Am. J. Ophthalmol. 225, 47–56 (2021).

    PubMed  Google Scholar 

  7. Iyengar, L. & Lovicu, F. J. Aqueous humour-induced lens epithelial cell proliferation requires FGF-signalling. Growth Factors 35, 131–143 (2017).

    CAS  PubMed  Google Scholar 

  8. Li, J. et al. Activation of autophagy inhibits epithelial to mesenchymal transition process of human lens epithelial cells induced by high glucose conditions. Cell Signal 75, 109768 (2020).

    CAS  PubMed  Google Scholar 

  9. Liu, X. et al. microRNA-199a-5p regulates epithelial-to-mesenchymal transition in diabetic cataract by targeting SP1 gene. Mol. Med. 26, 122 (2020).

    PubMed  PubMed Central  Google Scholar 

  10. Du, L. et al. Quercetin inhibited epithelial mesenchymal transition in diabetic rats, high-glucose-cultured lens, and SRA01/04 cells through transforming growth factor-β2/phosphoinositide 3-kinase/Akt pathway. Mol. Cell Endocrinol. 452, 44–56 (2017).

    CAS  PubMed  Google Scholar 

  11. Wu T. T., et al. AKR1B1-induced epithelial-mesenchymal transition mediated by RAGE-oxidative stress in diabetic cataract lens. Antioxidants (Basel) 9, 273 (2020).

  12. Mattick, J. S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Huang, Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J. Cell Mol. Med. 22, 5768–5775 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong, W., Zhu, G., Li, J. & Yang, X. LncRNA MALAT1 promotes the apoptosis and oxidative stress of human lens epithelial cells via p38MAPK pathway in diabetic cataract. Diabetes Res. Clin. Pract. 144, 314–321 (2018).

    CAS  PubMed  Google Scholar 

  15. Yang, J., Zhao, S. & Tian, F. SP1-mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J. Cell Mol. Med. 24, 554–561 (2020).

    CAS  PubMed  Google Scholar 

  16. Li, Y., Jiang, S. H., Liu, S. & Wang, Q. Role of lncRNA NEAT1 mediated by YY1 in the development of diabetic cataract via targeting the microRNA-205-3p/MMP16 axis. Eur. Rev. Med. Pharmacol. Sci. 24, 5863–5870 (2020).

    CAS  PubMed  Google Scholar 

  17. Nguyen, L. N. T. et al. Long non-coding RNA GAS5 regulates T cell functions via miR21-mediated signaling in people living with HIV. Front Immunol. 12, 601298 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lv, L. et al. Silence of lncRNA GAS5 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-27a. Artif Cells Nanomed. Biotechnol. 47, 2205–2212 (2019).

    CAS  PubMed  Google Scholar 

  19. Zhou, R. R. et al. Silencing of GAS5 alleviates glaucoma in rat models by reducing retinal ganglion cell apoptosis. Hum Gene Ther 30, 1505–1519 (2019).

    CAS  PubMed  Google Scholar 

  20. Zeng K., Feng, Q. G., Lin, B. T., Ma, D. H. & Liu, C. M. Effects of microRNA-211 on proliferation and apoptosis of lens epithelial cells by targeting SIRT1 gene in diabetic cataract mice. Biosci. Rep. 37, 695–708 (2017).

    Google Scholar 

  21. Yu, S. Y. et al. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J. Cell Mol. Med. 22, 4886–4898 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, C. et al. MiRNAs regulate oxidative stress related genes via binding to the 3’ UTR and TATA-box regions: a new hypothesis for cataract pathogenesis. BMC Ophthalmol. 17, 142 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Saika, S. et al. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial-mesenchymal transition of lens epithelium in mice. Lab Invest 84, 1259–1270 (2004).

    CAS  PubMed  Google Scholar 

  24. Raghavan, C. T. et al. AGEs in human lens capsule promote the TGFβ2-mediated EMT of lens epithelial cells: implications for age-associated fibrosis. Aging Cell 15, 465–476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kubo E., Shibata, T., Singh, D. P. & Sasaki, H. Roles of TGF β and FGF Signals in the Lens: tropomyosin regulation for posterior capsule opacity. Int. J. Mol. Sci. 19, 3093–4004 (2018).

    PubMed Central  Google Scholar 

  26. de Iongh, R. U., Wederell, E., Lovicu, F. J. & McAvoy, J. W. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs 179, 43–55 (2005).

    PubMed  Google Scholar 

  27. Das, S. J., Wishart, T. F. L., Jandeleit-Dahm, K. & Lovicu, F. J. Nox4-mediated ROS production is involved, but not essential for TGFβ-induced lens EMT leading to cataract. Exp. Eye Res. 192, 107918 (2020).

    CAS  PubMed  Google Scholar 

  28. Paraskevopoulou, M. D. et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 44, D231–D238 (2016).

    CAS  PubMed  Google Scholar 

  29. Riffo-Campos Á. L., Riquelme, I. & Brebi-Mieville, P. Tools for Sequence-Based miRNA Target Prediction: What to Choose? Int. J. Mol. Sci. 17, 1987–2004 (2016).

    PubMed Central  Google Scholar 

  30. Chen, Y. & Wang, X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 48, D127–d131 (2020).

    CAS  PubMed  Google Scholar 

  31. Skrypek, N., Goossens, S., De Smedt, E., Vandamme, N. & Berx, G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 33, 943–959 (2017).

    CAS  PubMed  Google Scholar 

  32. Serrano-Gomez, S. J., Maziveyi, M. & Alahari, S. K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 15, 18 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Li, X., Wang, F., Ren, M., Du, M. & Zhou, J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 19, 219 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J. et al. LncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis. Exp. Eye Res. 200, 108251 (2020).

    CAS  PubMed  Google Scholar 

  35. Sun, D. et al. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 18, 1801–1816 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ni, W. et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol. Cancer. 18, 143 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Zhao, J. H., Wang, B., Wang, X. H. & Xu, C. W. Effect of lncRNA GAS5 on the apoptosis of neurons via the notch1 signaling pathway in rats with cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 23, 10083–10091 (2019).

    PubMed  Google Scholar 

  38. Zhou, R. S. et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer 19, 779 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Tang, X. J., Wang, W. & Hann, S. S. Interactions among lncRNAs, miRNAs and mRNA in colorectal cancer. Biochimie 163, 58–72 (2019).

    CAS  PubMed  Google Scholar 

  40. Wang, J. Y. et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed. Pharmacother 121, 109627 (2020).

    CAS  PubMed  Google Scholar 

  41. Tao W., et al. miR-204-3p/Nox4 mediates memory deficits in a mouse model of alzheimer’s disease. Mol Ther https://doi.org/10.1016/j.ymthe.2020.09.006 (2020).

  42. Koga, T. et al. MicroRNA-204-3p inhibits lipopolysaccharide-induced cytokines in familial Mediterranean fever via the phosphoinositide 3-kinase γ pathway. Rheumatology (Oxford) 57, 718–726 (2018).

    CAS  Google Scholar 

  43. Xi, X. et al. MicroRNA-204-3p represses colon cancer cells proliferation, migration, and invasion by targeting HMGA2. J. Cell Physiol. 235, 1330–1338 (2020).

    CAS  PubMed  Google Scholar 

  44. Guo, J. et al. MiR-204-3p inhibited the proliferation of bladder cancer cells via modulating lactate dehydrogenase-mediated glycolysis. Front Oncol. 9, 1242 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Yuan, D. et al. LncRNA-ATB promotes the tumorigenesis of ovarian cancer via targeting miR-204-3p. Onco Targets Ther. 13, 573–583 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, X., Li, Q., Wang, C. & Li, Y. MicroRNA-204-3p attenuates high glucose-induced mpc5 podocytes apoptosis by targeting braykinin B2 receptor. Exp. Clin. Endocrinol. Diabetes 127, 387–395 (2019).

    CAS  PubMed  Google Scholar 

  47. Saika, S. et al. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am. J. Pathol. 164, 651–663 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  Google Scholar 

  49. Ji, Y. et al. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol. Sin. 37, 794–804 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Beshay, O. N. et al. Resveratrol reduces gentamicin-induced EMT in the kidney via inhibition of reactive oxygen species and involving TGF-β/Smad pathway. Life Sci. 258, 118178 (2020).

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 81970786 and 81670836), the Medical Science and Technology Project Jointly Built of Henan Province (Grant No. LHGJ20190196), and the Key Scientific Research Projects of Henan Colleges and Universities (Grant No. 20A320031).

Author information

Authors and Affiliations

Authors

Contributions

X.L. and G.Z. conceived and designed the study; X.L., M.S. and A.C. performed experiments; X.L. and M.S. collected and analyzed the data; X.L. wrote the original manuscript. G.Z. revised the original manuscript. All authors have approved the final version of the paper.

Corresponding author

Correspondence to Guangying Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The procedures involved in humen were carefully carried out in accordance with the principles of the Declaration of Helsinki and approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sun, M., Cheng, A. et al. LncRNA GAS5 regulates migration and epithelial-to-mesenchymal transition in lens epithelial cells via the miR-204-3p/TGFBR1 axis. Lab Invest 102, 452–460 (2022). https://doi.org/10.1038/s41374-021-00713-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41374-021-00713-3

Search

Quick links