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Determination of 1p/19q co-deletion status is important for the classification, prognostication, and personalized therapy in diffuse
lower-grade gliomas (LGG). We developed and validated a deep learning imaging signature (DLIS) from preoperative magnetic
resonance imaging (MRI) for predicting the 1p/19q status in patients with LGG. The DLIS was constructed on a training dataset (n =
330) and validated on both an internal validation dataset (n =123) and a public TCIA dataset (n = 102). The receiver operating
characteristic (ROC) analysis and precision recall curves (PRC) were used to measure the classification performance. The area under
ROC curves (AUC) of the DLIS was 0.999 for training dataset, 0.986 for validation dataset, and 0.983 for testing dataset. The F1-score
of the prediction model was 0.992 for training dataset, 0.940 for validation dataset, and 0.925 for testing dataset. Our data suggests
that DLIS could be used to predict the 1p/19q status from preoperative imaging in patients with LGG. The imaging-based deep
learning has the potential to be a noninvasive tool predictive of molecular markers in adult diffuse gliomas.

Laboratory Investigation (2022) 102:154-159; https://doi.org/10.1038/s41374-021-00692-5

INTRODUCTION
Diffuse lower-grade gliomas (LGG) are infiltrative neoplasms
comprising of world health organization (WHO) Grade Il and Il
gliomas'. The 2016 WHO classification of central nervous system
tumors recognized three subtypes of LGG based on histological and
molecular characteristics: (1) isocitrate dehydrogenase (IDH) mutant,
1p/19q co-deleted oligodendroglioma, (2) IDH mutant, 1p/19q intact
diffuse astrocytoma, (3) IDH wild-type diffuse astrocytomaZ. Further-
more, the latest 2021 WHO criteria advances the role of molecular
diagnostics in central nervous system tumor classification®. Accord-
ing to this criteria, 1p/19q status is vital to the determination of
oligodendroglioma. Moreover, 1p/19q co-deletion has been demon-
strated as a favorable prognostic biomarker in LGG due to its
predictive value for better response to adjuvant chemotherapy®.
Hence, determination of 1p/19q status is important for the
classification, prognostication, and personalized therapy in LGG.
Currently, detecting 1p/19q status requires glioma tissues
obtained via surgical resection or biopsy followed by fluorescence
in-situ hybridization (FISH) to identify chromosomal deletion®. On
the other hand, noninvasive detection of 1p/19q status in LGG is
challenging. In recent years, advances in artificial intelligence have
led to considerable interest in image-based molecular profiling of
gliomas®. A few studies utilized handcrafted radiomic features
extracted from preoperative magnetic resonance image (MRI) to

predict 1p/19q status in LGG via machine learning’~'°. However,
handcrafted features rely on current understanding of imaging,
therefore its prediction performance may be limited. Unlike
handcrafted radiomics, deep learning can automatically learn
predictive feature from images by its own''. Recent studies have
shown that deep learning approaches have achieved better
performance in tumor classification tasks, compared with radio-
mics and even human experts'>™'*. However, few studies have
investigated the feasibility of deep learning in predicting glioma
1p/19q status from imaging, except one most recent study
reporting a MRI-based deep learning model built using 368
patients with WHO II-IV gliomas from public the cancer imaging
archive (TCIA) database'>. However, this study only used T2-
weighted MRI in model building, and the obtained model was not
tested independently, so its reproducibility was unknown.

In this study including in total of 555 patients, we developed
and validated, both internally and externally, a deep convolutional
neural network (CNN) built from preoperative multiparametric MRI
to predict the 1p/19q status in patients with LGG.

MATERIALS AND METHODS

Patients and datasets

This study was a part of the registered clinical trial “MR Based Prediction of
Molecular Pathology in Glioma Using Artificial Intelligence” (ClinicalTrials.
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Fig. 1

The overview of the study design, including the deep learning imaging signature (DLIS) development and validation. The

architecture of the deep convolutional neural network is also shown. T1w, T1c, T2w, and FLAIR are short for T1-weighted, T1-weighted
gadolinium contrast-enhanced, T2-weighted, and fluid-attenuated inversion recovery imaging, respectively.

gov ID: NCT04217018). This study was approved by the Human Scientific
Ethics Committee of the First Affiliated Hospital of Zhengzhou University
(No. 2019-KY-176). Informed consents were waived by the Committee due
to the retrospective and anonymous nature. There were two datasets
included in this study: Dataset 1 contained 453 patients from the first
affiliated hospital of zhengzhou university (FAHZZU), Dataset 2 contained
102 patients from TCIA (https://www.cancerimagingarchive.net/). Dataset 1
was divided into two sets: a (1) training set (n = 330) used to develop the
deep learning imaging signature (DLIS), and an (2) internal validation set
(n=123) used to optimize the deep CNN. Dataset 2 was used for external
validation for the DLIS, as illustrated in Fig. 1. Note that the training and
internal validation sets were selected from the FAHZZU cohort using
stratified random sampling, where the clinical parameters among these
cohorts were balanced. The inclusion criteria are as follows: (1) adult
patients (>18 years) surgically treated and pathologically diagnosed as
primary WHO Il or Il diffuse gliomas, (2) availability of clinical data and 1p/
19qg co-deletion status, (3) availability of preoperative MRI including four
sequences: T1-weighted, T2-weighted, T2-weighted fluid-attenuated inver-
sion recovery (FLAIR), and T1-weighted gadolinium contrast-enhanced
(Tlw, T2w, FLAIR, and T1c), (4) availability of sufficient image quality
without significant artifacts, determined by neuroradiologists and neuro-
surgeons. The selection pipeline for the two datasets is described in Fig. 2.
Clinical parameters, including gender, age, and preoperative Karnofsky
performance status (KPS) scale were collected from the medical record
system of FAHZZU and the cancer genome atlas (TCGA, https://www.
cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga)
database.

Detection of chromosome 1p/19q co-deletion status by FISH
Formalin-fixed, paraffin embedded tissues of the FAHZZU dataset were
used for detection of chromosome 1p/19q status by FISH. The detailed
protocol is described in Supplementary A1,

MRI acquisition

Patients in Dataset 1 (FAHZZU) and Dataset 2 (TCIA) were all performed on
either 1.5T or 3.0T clinical MR scanners with different manufacturers and
imaging parameters. The protocol in the two datasets all consisted of the
following sequences: (a) axial T1w before and after intravenous adminis-
tration of the gadolinium-based contrast agent (T1c); (b) axial T2w; (c) axial
FLAIR. Detailed information about the MR machines and imaging
parameters of the two datasets are available in Supplementary A2.

Image preprocessing

A MRI preprocessing pipeline was performed to normalize the image
variations across patients. First, N4ITK was applied for bias field distortion
correction. After skull stripping, all voxels were isotropically resampled into
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Fig. 2 Patient enrollment process for the two datasets. The finally
included datasets were the Dataset 1 (FAHZZU) of 453 patients used
for model training and internal validation, and the Dataset 2 (TCIA)
of 102 patients used for external validation. LGG is short for lower-
grade gliomas, FAHZZU is short for the first affiliated hospital of
zhengzhou university, TCGA is short for the cancer genome atlas,
TCIA is short for the cancer imaging archive, and MRI is short for
magnetic resonance imaging.

1x1x1mm3 with linear interpolation for consistent feature extraction.
Rigid registration was performed to align the four sequences using T1c as a
template with the mutual information similarity metric, generating four
registered images rT1w, rT2w, rFLAIR, and rT1c. Tumor contours were
manually traced slice-by-slice by a board-certified neuroradiologist (J.Y.
with 11 years’ experience) blinded to clinical data in the axial section using
the ITK-SNAP software. The whole tumor region, including the contrast-
enhancing, nonenhancing, necrosis and edema, if any, was delineated as
the signal abnormal regions in the white matter on rFLAIR images. rT2w
and rT1c images were used to cross-check the extension of the whole
tumor areas. The delineated contours were confirmed by another
neurosurgeon (Z.Y.Z. with 11 years’ experience), where uncertainty or
disagreement was settled via discussion. Finally, consensus delineation
was achieved for each patient.

Deep CNN development

Based on the tumor contours, a 3D bounding box containing the entire
tumor was calculated for each patient. To represent the entire tumor, 5
equally-spaced axial slices within the tumor volume were selected from
each of the 4 registered MRIs. Then, 20 slices per patient were obtained
and used as a single sample of a 3D tumor. Using the 3D bounding box,
the selected slices from each MR sequence were cropped into small ones.
All slices were resized to 256 x 256. The 20 resized slices were fed into the
network as a single input and generated one single output. The deep CNN
used for 1p/19q status prediction employed the ResNet-34 architecture as
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Table 1. Characteristics of patients in the training, validation, and testing datasets.

Characteristic Training (n = 330) Validation (n = 123) P values Testing (n =102) P values
Sex 0.222 0.059
Male 193 (58.5%) 67 (54.5%) 46 (45.1%)

Female 137 (41.5%) 56 (45.5%) 56 (54.9%)

Age (years) 447 +£11.6 43.1+114 0.094 46.3+139 0.156
KPS 75.8+10.7 745+127 0.087 76.7+11.0

Grade 0.144 0.050
] 230 (69.7%) 92 (74.8%) 51 (50.0%)

1] 100 (30.3%) 31 (25.2%) 51 (50.0%)

IDH mutation 0.063 0.061
Yes 244 (73.94%) 102 (82.93%) 83 (81.4%)

R132H 237 (97.13%) 100 (98.04%)

R132C 2 (0.82%)

R132K 2 (0.82%) 2 (1.96%)

R132G 2 (0.82%)

R132W 1 (0.41%)

No 86 (26.06%) 21 (17.07%) 19 (18.6%)

1p/199g co-deletion 0.342 0.0094
Yes 140 (42.42%) 59 (47.97%) 28 (27.45%)

Grade Il 91 (65.00%) 44 (74.58%) 17 (60.71%)

Grade Il 49 (35.00%) 15 (25.42%) 11 (39.29%)

No 190 (57.58%) 64 (52.03%) 74 (72.55%)

Grade Il 139 (73.16%) 48 (75%) 34 (45.95%)

Grade llI 51 (26.84%) 16 (25%) 40 (54.05%)

the backbone. The network was trained from scratch on the training set
(6600 images, 330 patients) and tuned on the internal validation set (2460
images, 123 patients). During training, an Adam optimizer was used with a
learning rate of 0.001 and a batch size of 32. Random rotation, shear and
zoom approaches were used for data augmentation. The network output
was the DLIS used for predicting the 1p/19q status. Detailed information of
the network is described in Supplementary A3.

Statistical analysis

Statistical analysis was performed using R version 3.6.1. The patient and
tumor characteristics between training, validation, and testing cohorts
were assessed by Wilcoxon test or Chi-square test, where P value <0.05
was considered significant. The performance of the presented deep CNN
was independently assessed on the external testing dataset. The receiver
operating characteristic (ROC) analysis was used to measure the
classification performance in terms of area under the ROC curve (AUCQ),
accuracy, sensitivity, and specificity. The optimal cutoff was chosen by
using the X-tile tool. The precision recall curves (PRC) and F1-score were
also calculated to evaluate the prediction performance. All indices were
calculated for training, internal validation, and testing datasets. For
comparison, another two parameters, T2-FLAIR mismatch (yes or not)
and T1-contrast enhancement (no, blurry, nodular, and ring-lik enhance-
ment), were calculated from MRI for each patient. First, Wilcoxon test was
performed on the entire dataset to evaluate the univariable association of
each parameter with 1p/19q co-deletion status, where P < 0.05 indicated
the statistical significance. Then, a multivariable model was built by
combing the CNN-generated risk score, the T2-FLAIR mismatch, and the
T1-contrast enhancement using logistic regression. The performance of the
multivariable model was assessed by using ROC analysis.

RESULTS

Patient characteristics

In total 555 patients from FAHZZU and the public database TCIA
were enrolled in this study (mean age, 44.6 years + 12.0 [standard

SPRINGER NATURE

deviation]; 306 male), as summarized in Table 1. The study cohort
comprised a training dataset (n =330, from FAHZZU, mean age,
44.7 years+11.6; 193 male), an internal validation dataset (n=
123, from FAHZZU, mean age, 43.1 years + 11.4; 67 male), and an
external testing dataset (n = 102, from TCIA, mean age, 46.3 years
+13.9; 46 male). As shown in Supplementary Fig. S1, 1p/19q co-
deletion was significantly correlated with the overall survival in the
training and validation datasets, respectively (P < 0.05). And the
5-year survival rate of patients with 1p/19q co-deletion was
significantly higher (P < 0.05).

Classification performance

The ROC curves of the deep learning model for training, internal
validation, and testing datasets are shown in Fig. 3A-C. The AUC
of the deep learning model was 99.99% for training dataset,
98.62% for validation dataset, and 98.30% for testing dataset. The
optimal cutoff determined by using the X-tile tool was 0.65. At this
cutoff, the accuracy was 99.30% for training dataset, 94.51% for
validation dataset, and 93.33% for testing dataset. The PRC curves
of the deep learning model for training, validation, and testing
datasets are shown in Fig. 3D-F. The F1-score of the deep learning
model was 99.20% for training dataset, 93.99% for validation
dataset, and 92.54% for testing dataset. The classification results of
the deep learning model are summarized in Table 2. The
predictive power of T2-FLAIR mismatch and T1-contrast enhance-
ment was also assessed. The univariable Wilcoxon P value was
0.0003 for T2-FLAIR mismatch and 0.0088 for T1-contrast
enhancement, respectively. The multivariable model combining
the deep learning risk score, the T2-FLAIR mismatch and the T1-
contrast enhancement were built. The multivariable linear model
generated by the logistic regression is shown in Supplemen-
tary A4, where the weight of the deep learning risk score was
larger than that of the other two parameters. The AUC of the
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Fig. 3 The classification performance of the deep learning model. The receiver operating characteristic (ROC, A-C) and precision recall
curves (PRC, D-F) for training, validation, and testing datasets. The area under the ROC curve (AUC) was shown in the right bottom of the ROC
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Table 2.

datasets

AUC

Accuracy (%)

A summary of the classification performance of the deep learning model.

Sensitivity (%)

Specificity (%) F1-score

0.999 (0.9855-100.00)
0.986 (0.9234-0.9646)
0.983 (0.9110-0.9549)

99.3 (98.37-100.00)
94.5 (92.48-96.34)
93.3 (91.12-95.49)

Training (n = 330)
Validation (n = 123)
Testing (n =102)

multivariable model was 99.0% for training dataset, 99.9% for
validation dataset, and 99.9% for testing dataset. DeLong analysis
reveals that there was no significant difference between the AUCs
of the deep learning model and the multivariable model on each
dataset. The ROC curves and the classification performance of the
multivariable model are shown in Supplementary Fig. S2 and
Supplementary Table S1.

Interpretation of the deep CNN prediction

To illustrate where the deep learning model focused on for 1p/19q
status prediction, the class activation maps (CAMs) of the deep
CNN with corresponding MRI of four representative patients
classified into 1p/19q co-deleted and 1p/19q intact groups are
shown in Fig. 4. These maps show that deep CNN could highlight
regions relevant to prediction while suppress other less relevant
regions. This heatmap-like display allows assessing the tumoral
regions with potential predictive value. To further illustrate the
relevance of the deep CNN features with the 1p/19q status, a
heatmap of the 1p/19q status-specific features is presented in
Fig. 5. The deep features in this heatmap were extracted from the
fully connected layer used for final prediction.

DISCUSSION

In this retrospective multi-center study, we developed and
validated, both internally and externally, a deep learning model
predictive of 1p/19q co-deletion status from preoperative MRI in
patients with LGG. Aside from its diagnostic and prognostic
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99.4 (98.39-100.00)
93.0 (89.43-96.03)
93.0 (89.43-96.03)

99.2 (97.94-100.0)
95.9 (93.20-98.11)
93.6 (90.45-96.46)

0.992 (97.88-100.0)
0.940 (90.76-96.86)
0.925 (89.11-95.68)

values, 1p/19q status has also been revealed as an informative
biomarker to surgical plans in LGG'"2'. More specifically, studies
have showed postsurgical residual tumor has a more negative
impact on the survival of the IDH mutant, 1p/19q intact gliomas
than that of the IDH mutant, 1p/19q co-deleted gliomas'®'®.
Another study suggested 1p/19q intact but not 1p/19q co-deleted
LGG would benefit from gross total resection (GTR)?. It was also
reported that the survival difference was nonsignificant between
GTR and non-GTR in 1p/19qg co-deleted WHO Il gliomas, but this
difference was significant in 1p/19q intact WHO Il gliomas®'.
However, in current clinical scenario, determining 1p/19q status of
gliomas necessitates an invasive surgical resection or biopsy.
Hence, preoperative noninvasive detection of 1p/19q status
would better aid neurosurgeon to make an informed surgical
plan, avoiding non-maximal resection in 1p/19q intact LGG or
less-justified surgery-related neurological deficits in 1p/19q
co-deleted LGG.

Recent imaging-genomic, or radiogenomic studies revealed the
potential link between imaging traits and underlying genetic
alterations. Previously, a visual-based MRI characteristic, T2-FLAIR
mismatch sign was recognized a specific imaging biomarker that
may discriminate 1p/19q status in LGG?%. Nevertheless, the
sensitivity of T2-FLAIR mismatch sign was too low (30-34%)?,
which may hamper its utility in clinical application. On the other
hand, recent advanced in medical image analysis allows us to
extract numerous quantitative features from imaging. These
imaging features can be used to predict clinical outcomes or
molecular characteristics via machine learning approach. Several
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Fig. 4 T1w, T1c, T2w, FLAIR images, and corresponding class
activation maps (CAMs) of the deep learning imaging signature
(DLIS) in two grade Il/lll 1p/19q co-deleted and two grade II/11l 1p/
19q intact patients. The CAMs highlight the regions that contribute
more to the 1p/19q status prediction.

Deep features

Patients

Fig. 5 A heatmap of the 1p/19q status-specific features. The
features extracted from the fully connected layer of the convolu-
tional neural network were clustered along the y-axis. The relevance
of these deep features with 1p/19q status are clearly illustrated by
the clustered heatmap.

studies focused on handcrafted radiomics features extracted from
MRI to predict 1p/19q status and reached AUCs no more than 0.9,
with only one study including an independent set for model
validation”'°. More recently, Yogananda et al developed a deep
learning model using only T2-weighted MR images to predict 1p/
19q status in TCIA database'”, where deep features from
multiparametric MRI such as T1w, FLAIR, and Tl1c were not
investigated.

Our deep learning algorithm was trained on 330 patients (AUC
0.999), validated in 123 patients (AUC 0.986), and tested in an
independent TCIA set (AUC 0.983). Compared with previous 1p/
19q prediction models based on handcrafted radiomic or deep
learning’~"", our model reached the highest accuracy, sensitivity,
and specificity. The reasons for this phenomenon may be the large
amount of sample size and the inclusion of multiparametric MRI
(TTw, T2w, FLAIR, and T1c) for training the deep learning model. In
addition, the performance of our model was tested in a multi-
institutional TCIA set and reached a considerably high AUC, which
demonstrated the generalizability of our model. Furthermore, we
demonstrate the localizability of the CAMs of deep features in our
approach for 1p/19q status prediction. Figure 4 shows the
example of CAMs of the DLIS in two grade I/l 1p/19q co-
deleted and two grade I/l 1p/19q intact patients. These
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heatmaps illustrate that the deep CNN model pays most attention
to the contrast-enhancing, nonenhancing, and necrosis areas,
while they ignores the edema areas included in the whole tumor
regions. Thus, we deduce that the contrast-enhancing, none-
nhancing, and necrosis areas in the whole tumor regions have the
most potential predictive value.

Despite the encouraging results, several limitations should be
noted. First, our study only includes the conventional MR
sequences, incorporating advanced MRI sequences such as
diffusion and perfusion MRI may provide additional information
and boost prediction performance for 1p/19q status>*%*. Second,
deep learning image features excavated by black-box-like net-
works are vast, nameless, and obscure, which is a major obstacle
lies in the way of translating deep learning prediction model into
clinical practice. More co-clinical and pre-clinical experimental
work should be warranted to clarify the biological basis of our
presented model.

In conclusion, our findings demonstrate that a deep CNN model
built from preoperative multiparametric MRI could predict the 1p/
19q status in LGG patients with high accuracy, sensitivity, and
specificity. The imaging-based deep learning has the potential to
be a noninvasive tool predictive of vital molecular markers in adult
diffuse gliomas.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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