Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bone mesenchymal stem cell-derived extracellular vesicles containing NORAD promote osteosarcoma by miR-30c-5p

A Correction to this article was published on 19 April 2022

This article has been updated

Abstract

Osteosarcoma is a bone tumor that often affects children, adolescents and young people. Non-coding RNA activated by DNA damage (NORAD) can promote the proliferation of cancer cells in multiple tumors. Thus, the current study set out to explore the role of NORAD derived from extracellular vesicles (EVs) of bone mesenchymal stem cells (BMSCs) in osteosarcoma. First, NORAD was highly expressed in osteosarcoma cells and tissues, which might be associated with the progression and metastasis of osteosarcoma. We isolated EVs from the characterized BMSCs, and found that NORAD was transferred from BMSCs to osteosarcoma cells via EVs in the co-culture system. Consequently, NORAD delivered by BMSC-derived EVs promoted the proliferation and invasion of osteosarcoma cells. Subsequently, bioinformatics analyses suggested potential binding relationship between NORAD and microRNA-30c-5p (miR-30c-5p) as well as between miR-30c-5p and Krueppel-like factor 10 (KLF10), and the results of which were further verified by dual luciferase reporter gene assay, RNA immunoprecipitation, and RNA pull-down assay. Mechanistically, NORAD acted as a sponge of miR-30c-5p and up-regulated the expression of KLF10 where miR-30-c-5p mimic declined the effect induced by NORAD on cancer cells. The osteosarcoma cells were injected into mice to develop tumor growth and metastasis models. In these two models, injection of BMSC-EVs elevated NORAD expression and KLF10 but reduced miR-30c-5p expression, whereby suppressing tumor growth and lung metastasis. To conclude, BMSC-EVs deliver NORAD to osteosarcoma cells to regulate the miR-30c-5p/KLF10 axis, thereby accelerating the progression and metastasis of osteosarcoma.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: NORAD induced lung metastasis of osteosarcoma.
Fig. 2: BMSC-EVs transmitted NORAD to osteosarcoma cells.
Fig. 3: NORAD in BMSC-EVs enhanced the proliferative and invasive potentials of osteosarcoma cells.
Fig. 4: NORAD adsorbing miR-30c-5p affected the proliferation and invasion of osteosarcoma cells.
Fig. 5: NORAD promoted KLF10 expression via sponging miR-30c-5p.
Fig. 6: EV-NORAD promoted the proliferation and invasion of osteosarcoma cells via miR-30c-5p/KLF10 axis.
Fig. 7: NORAD from BMSC-EVs promoted lung metastasis of osteosarcoma.
Fig. 8: BMSC-EVs transferred NORAD to osteosarcoma cells.

Availability of data and materials

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. Jawad, M. U., Cheung, M. C., Clarke, J., Koniaris, L. G. & Scully, S. P. Osteosarcoma: improvement in survival limited to high-grade patients only. J. Cancer. Res. Clin. Oncol. 137, 597–607 (2011).

    PubMed  Article  Google Scholar 

  2. Maran, A., Yaszemski, M.J., Kohut, A. & Voronov, A. Curcumin and osteosarcoma: can invertible polymeric micelles help? Materials (Basel) 9, (2016)

  3. Hameed, M. & Mandelker, D. Tumor syndromes predisposing to osteosarcoma. Adv. Anat. Pathol. 25, 217–222 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  4. Ottaviani, G. & Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 152, 3–13 (2009).

    PubMed  Article  Google Scholar 

  5. Pakos, E. E. et al. Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur. J. Cancer 45, 2367–2375 (2009).

    PubMed  Article  Google Scholar 

  6. Longhi, A. et al. Height as a risk factor for osteosarcoma. J. Pediatr. Hematol. Oncol. 27, 314–318 (2005).

    PubMed  Article  Google Scholar 

  7. Lindsey, B. A., Markel, J. E. & Kleinerman, E. S. Osteosarcoma overview. Rheumatol. Ther. 4, 25–43 (2017).

    PubMed  Article  Google Scholar 

  8. Reed, D. R. et al. Treatment pathway of bone sarcoma in children, adolescents, and young adults. Cancer 123, 2206–2218 (2017).

    PubMed  Article  Google Scholar 

  9. Harrison, D. J., Geller, D. S., Gill, J. D., Lewis, V. O. & Gorlick, R. Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 18, 39–50 (2018).

    CAS  PubMed  Article  Google Scholar 

  10. Xie, L., Ji, T. & Guo, W. Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol. Rep. 38, 625–636 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Cortini, M., Avnet, S. & Baldini, N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 405, 90–99 (2017).

    CAS  PubMed  Article  Google Scholar 

  12. Verrecchia, F. & Redini, F. Transforming growth factor-beta signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment. Front. Oncol. 8, 133 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  13. Zheng, Y., Wang, G., Chen, R., Hua, Y. & Cai, Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res. Ther. 9, 22 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Tkach, M. & Thery, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    CAS  PubMed  Article  Google Scholar 

  15. Zhang, X. et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 18, 40 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  16. Qi, J. et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol. Biochem. 42, 2242–2254 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. Zhao, W. et al. Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p. Aging (Albany NY) 11, 9581–9596 (2019).

    CAS  Article  Google Scholar 

  18. Yang, Z. et al. Noncoding RNA activated by DNA damage (NORAD): Biologic function and mechanisms in human cancers. Clin. Chim. Acta 489, 5–9 (2019).

    CAS  PubMed  Article  Google Scholar 

  19. Prensner, J. R. & Chinnaiyan, A. M. The emergence of lncRNAs in cancer biology. Cancer Discov 1, 391–407 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Li, P. et al. MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochem Biophys Res Commun 503, 2833–2840 (2018).

    CAS  PubMed  Article  Google Scholar 

  21. Yang, D. et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4. Cancer Lett. 473, 33–49 (2020).

    CAS  PubMed  Article  Google Scholar 

  22. Wang, X. et al. Long noncoding RNA NORAD regulates cancer cell proliferation and migration in human osteosarcoma by endogenously competing with miR-199a-3p. IUBMB Life 71, 1482–1491 (2019).

    CAS  PubMed  Article  Google Scholar 

  23. Bing, Z. et al. Effect of mechanical stretch on the expressions of elastin, LOX and Fibulin-5 in rat BMSCs with ligament fibroblasts co-culture. Mol. Biol. Rep. 39, 6077–6085 (2012).

    PubMed  Article  CAS  Google Scholar 

  24. Puzar Dominkus, P. et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta Biomembr. 1860, 1350–1361 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. Guo, Y., Rubin, E. M., Xie, J., Zi, X. & Hoang, B. H. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin. Orthop. Relat. Res. 466, 2039–2045 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  26. Yuan, J. et al. Osteoblastic and osteolytic human osteosarcomas can be studied with a new xenograft mouse model producing spontaneous metastases. Cancer Invest. 27, 435–442 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  27. Pietrovito, L. et al. Bone marrow-derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition. Mol. Oncol. 12, 659–676 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Lazennec, G. & Jorgensen, C. Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 26, 1387–1394 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Fontanella, R. et al. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion. Cancer Lett. 370, 100–107 (2016).

    CAS  PubMed  Article  Google Scholar 

  30. Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest. 126, 1208–1215 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  31. Du, L. et al. CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis. 9, 714 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Chen, A. K., Reuveny, S. & Oh, S. K. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol. Adv. 31, 1032–1046 (2013).

    PubMed  Article  CAS  Google Scholar 

  33. Raab-Traub, N. & Dittmer, D. P. Viral effects on the content and function of extracellular vesicles. Nat. Rev. Microbiol. 15, 559–572 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Qin, F. et al. Bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-208a promotes osteosarcoma cell proliferation, migration, and invasion. J. Cell Physiol. 235, 4734–4745 (2020).

    CAS  PubMed  Article  Google Scholar 

  35. Baglio, S. R. et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 6, 127 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Jones, K. B. et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 72, 1865–1877 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Wang K, Jiang W, Cheng C, Li Y, Tu M. Pathological and therapeutic aspects of long noncoding RNAs in osteosarcoma. Anticancer Agents Med. Chem. (2017)

  38. Smolle MA, Pichler M. The role of long non-coding RNAs in Osteosarcoma. Noncoding RNA, 4, (2018)

  39. Xie, X. et al. LncRNA NORAD targets miR-410-3p to regulate drug resistance sensitivity of osteosarcoma. Cell Mol. Biol. (Noisy-le-grand) 66, 143–148 (2020).

    Article  Google Scholar 

  40. Yang, Z. et al. Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis. 7, e2389 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Tan, B. S. et al. LncRNA NORAD is repressed by the YAP pathway and suppresses lung and breast cancer metastasis by sequestering S100P. Oncogene 38, 5612–5626 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. Iqbal, M. A., Arora, S., Prakasam, G., Calin, G. A. & Syed, M. A. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med. 70, 3–20 (2019).

    CAS  PubMed  Article  Google Scholar 

  43. Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Pei, B. et al. Downregulation of microRNA-30c-5p was responsible for cell migration and tumor metastasis via COTL1-mediated microfilament arrangement in breast cancer. Gland Surg. 9, 747–758 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  45. Zhou, Y. et al. lncRNA DLEU2 modulates cell proliferation and invasion of non-small cell lung cancer by regulating miR-30c-5p/SOX9 axis. Aging (Albany NY) 11, 7386–7401 (2019).

    CAS  Article  Google Scholar 

  46. Cao, J. M., Li, G. Z., Han, M., Xu, H. L. & Huang, K. M. MiR-30c-5p suppresses migration, invasion and epithelial to mesenchymal transition of gastric cancer via targeting MTA1. Biomed Pharmacother 93, 554–560 (2017).

    CAS  PubMed  Article  Google Scholar 

  47. Zhang, H. et al. LncRNA CASC15 is upregulated in osteosarcoma plasma exosomes and CASC15 knockdown inhibits osteosarcoma progression by regulating miR-338-3p/RAB14 Axis. Onco. Targets Ther. 13, 12055–12066 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Subramaniam, M., Hawse, J. R., Rajamannan, N. M., Ingle, J. N. & Spelsberg, T. C. Functional role of KLF10 in multiple disease processes. Biofactors 36, 8–18 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, L. et al. Circ-0003998 promotes cell proliferative ability and invasiveness by binding to miR-197-3p in osteosarcoma. Eur. Rev. Med. Pharmacol. Sci. 23, 10638–10646 (2019).

    CAS  PubMed  Google Scholar 

  50. Baglio, S. R. et al. Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin. Cancer Res. 23, 3721–3733 (2017).

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed research: HH, WZ, PY; Performed experiments: HH, MD, TL; Analyzed data: WZ; Interpreted results of experiments: HH, MD, TL; Prepared figures: LZ; Drafted paper: HH, MD, TL, WZ; Edited and revised paper: LZ, WZ, PY; Approved final version of paper: HH, MD, TL, WZ, LZ, WZ, PY.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to a figure error.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, H., Ding, M., Li, T. et al. Bone mesenchymal stem cell-derived extracellular vesicles containing NORAD promote osteosarcoma by miR-30c-5p. Lab Invest 102, 826–837 (2022). https://doi.org/10.1038/s41374-021-00691-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41374-021-00691-6

Search

Quick links