Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anti-tumor effects of vitamin D in glioblastoma: mechanism and therapeutic implications

Abstract

Glioma is the most prevalent primary brain tumor in adults among which glioblastoma is the most malignant and lethal subtype. Its common resistance to conventional chemotherapeutics calls for the development of alternative or concomitant treatment. Taking advantage of its endocrine function as a neurosteroid, vitamin D has become a target of interest to be used in conjunction with different chemotherapies. In this article, we review the mechanisms through which vitamin D and its analogs induce anti-tumor activity in glioblastoma, and the practical issues relevant to their potential application based on in vitro and in vivo studies. Vitamin D has largely been reported to promote cell cycle arrest and induce cell death to suppress tumor growth in glioblastoma. Glioblastoma cells treated with vitamin D have also shown reduced migratory and invasive phenotypes, and reduced stemness. It is worth noting that vitamin D analogs are able to produce similar inhibitory actions without causing adverse effects such as hypercalcemia in vivo. Upregulation of vitamin D receptors by vitamin D and its analogs may also play a role in enhancing its anti-tumor activity. Based on current findings and taking into consideration its potential cancer-protective effects, the clinical application of vitamin D in glioblastoma treatment and prevention will be discussed. With some study findings subject to controversy, further investigation is warranted to elucidate the mechanism of action of vitamin D and to evaluate relevant issues regarding its treatment efficacy and potential clinical application.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Vitamin D-induced anti-tumoral actions in cell proliferation, apoptosis, migration, invasion, and stemness.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. 1.

    Demuth, T. & Berens, M. Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70, 217–228 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Sathornsumetee, S. & Rich, J. New treatment strategies for malignant gliomas. Expert Rev. Anticancer Ther. 6, 1087–1104 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Mahaley, J., Mettlin, C., Natarajan, N., Laws, J. & Peace, B. National survey of patterns of care for brain-tumor patients. J. Neurosurg. 71, 826–836 (1989).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Louis, D. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro. Oncol. 23, 1231–1251 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Salomon, D. et al. Vitamin D receptor expression is associated with improved overall survival in human glioblastoma multiforme. J. Neurooncol. 118, 49–60 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Elmaci, I. & Altinoz, M. A metabolic inhibitory cocktail for grave cancers: metformin, pioglitazone and lithium combination in treatment of pancreatic cancer and glioblastoma multiforme. Biochem. Genet. 54, 573–618 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Elmaci, I., Ozpinar, A., Ozpinar, A., Perez, J. & Altinoz, M. From epidemiology and neurometabolism to treatment: Vitamin D in pathogenesis of glioblastoma Multiforme (GBM) and a proposal for Vitamin D + all-trans retinoic acid + Temozolomide combination in treatment of GBM. Metab. Brain. Dis. 34, 687–704 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Newlands, E. et al. Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J. Cancer 65, 287–291 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Nachbichler, S., Schupp, G., Ballhausen, H., Niyazi, M. & Belka, C. Temozolomide during radiotherapy of glioblastoma multiforme: daily administration improves survival. Strahlenther Onkol. 193, 890–896 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Dehdashti, A., Hegi, M., Regli, L., Pica, A. & Stupp, R. New trends in the medical management of glioblastoma multiforme: the role of temozolomide chemotherapy. Neurosurg. Focus 20, E6 (2006).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhang, J., Stevens, M. & Bradshaw, T. Temozolomide: mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 5, 102–114 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Begemann, M. et al. Growth inhibition induced by Ro 31-8220 and calphostin C in human glioblastoma cell lines is associated with apoptosis and inhibition of CDC2 kinase. Anticancer Res. 18, 3139–3152 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gagliano, N. et al. Ukrain modulates glial fibrillary acidic protein, but not connexin 43 expression, and induces apoptosis in human cultured glioblastoma cells. Anticancer Drugs 18, 669–676 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Garcion, E., Wion-Barbot, N., Montero-Menei, C., Berger, F. & Wion, D. New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab. 13, 100–105 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Kalueff, A. & Tuohimaa, P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care 10, 12–19 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Beer, T. et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT investigators. J. Clin. Oncol. 25, 669–674 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Guyton, K., Kensler, T. & Posner, G. Vitamin D and vitamin D analogs as cancer chemopreventive agents. Nutr. Rev. 61, 227–238 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Holick, M. Vitamin D and sunlight: strategies for cancer prevention and other health benefits. Clin. J. Am. Soc. Nephrol. 3, 1548–1554 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Johnson, C., Hershberger, P., Bernardi, R., McGuire, T. & Trump, D. Vitamin D receptor: a potential target for intervention. Urology 60, 123–130 (2002). discussion 130-121.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Beer, T. & Myrthue, A. Calcitriol in cancer treatment: from the lab to the clinic. Mol. Cancer Ther. 3, 373–381 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zigmont, V. et al. Association between prediagnostic serum 25-hydroxyvitamin D concentration and glioma. Nutr. Cancer 67, 1120–1130 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Holick, M. Vitamin D: a millenium perspective. J. Cell Biochem. 88, 296–307 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Bartoccini, E. et al. Nuclear lipid microdomains regulate nuclear vitamin D3 uptake and influence embryonic hippocampal cell differentiation. Mol. Biol. Cell 22, 3022–3031 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Kliewer, S., Umesono, K., Mangelsdorf, D. & Evans, R. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355, 446–449 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Pike, J. & Meyer, M. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol. Metab. Clin. North Am. 39, 255–269 (2010). table of contents.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Zierold, C., Darwish, H. & Deluca, H. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc. Natl. Acad. Sci. USA 91, 900–902 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Liu, M., Lee, M., Cohen, M., Bommakanti, M. & Freedman, L. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 10, 142–153 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Jiang, F., Li, P., Fornace, A., Nicosia, S. & Bai, W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J. Biol. Chem. 278, 48030–48040 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Hakim, I. & Bar-Shavit, Z. Modulation of TNF-alpha expression in bone marrow macrophages: involvement of vitamin D response element. J. Cell Biochem. 88, 986–998 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Beno, D., Brady, L., Bissonnette, M. & Davis, B. Protein kinase C and mitogen-activated protein kinase are required for 1,25-dihydroxyvitamin D3-stimulated Egr induction. J. Biol. Chem. 270, 3642–3647 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Park, W. et al. Induction of apoptosis by vitamin D3 analogue EB1089 in NCI-H929 myeloma cells via activation of caspase 3 and p38 MAP kinase. Br. J. Haematol. 109, 576–583 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Okazaki, T., Bielawska, A., Bell, R. & Hannun, Y. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 265, 15823–15831 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Cataldi S., et al. Effect of 1alpha,25(OH)2 vitamin D3 in mutant P53 glioblastoma cells: involvement of neutral sphingomyelinase1. Cancers 12, 3163 (2020).

  35. 35.

    Emanuelsson, I., Wikvall, K., Friman, T. & Norlin, M. Vitamin D analogues tacalcitol and calcipotriol inhibit proliferation and migration of T98G human glioblastoma cells. Basic Clin. Pharmacol. Toxicol. 123, 130–136 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Ferronato, M. et al. Synthesis of a novel analog of calcitriol and its biological evaluation as antitumor agent. J. Steroid. Biochem. Mol. Biol. 185, 118–136 (2019).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Maleklou, N., Allameh, A. & Kazemi, B. Preparation, characterization and in vitro-targeted delivery of novel Apolipoprotein E-based nanoparticles to C6 glioma with controlled size and loading efficiency. J. Drug Target 24, 348–358 (2016).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Ferronato, M. et al. Antitumoral effects of the alkynylphosphonate analogue of calcitriol EM1 on glioblastoma multiforme cells. J. Steroid Biochem. Mol. Biol. 178, 22–35 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Vuolo, L., Di Somma, C., Faggiano, A. & Colao, A. Vitamin D and cancer. Front. Endocrinol. 3, 58 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Wang, Q. M., Jones, J. B. & Studzinski, G. P. Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res. 56, 264–267 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Gao, Q., Lei, T. & Ye, F. Therapeutic targeting of EGFR-activated metabolic pathways in glioblastoma. Expert Opin. Investig. Drugs 22, 1023–1040 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Li, X. et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 7, 33440–33450 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Bak, D. et al. Autophagy enhancement contributes to the synergistic effect of vitamin D in temozolomide-based glioblastoma chemotherapy. Exp. Ther. Med. 11, 2153–2162 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Hoyer-Hansen, M., Bastholm, L., Mathiasen, I., Elling, F. & Jaattela, M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ. 12, 1297–1309 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Picotto, G., Liaudat, A., Bohl, L., Tolosa & de Talamoni, N. Molecular aspects of vitamin D anticancer activity. Cancer Invest. 30, 604–614 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Hoyer-Hansen, M., Nordbrandt, S. & Jaattela, M. Autophagy as a basis for the health-promoting effects of vitamin D. Trends Mol. Med. 16, 295–302 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47.

    Guzey, M., Kitada, S. & Reed, J. Apoptosis induction by 1alpha,25-dihydroxyvitamin D3 in prostate cancer. Mol. Cancer Ther. 1, 667–677 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Magrassi, L. et al. Vitamin D metabolites activate the sphingomyelin pathway and induce death of glioblastoma cells. Acta Neurochir. 140, 707–713 (1998). discussion 713-704.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Okazaki, T., Bielawska, A., Domae, N., Bell, R. & Hannun, Y. Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 269, 4070–4077 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Pirianov, G. & Colston, K. Interactions of vitamin D analogue CB1093, TNFalpha and ceramide on breast cancer cell apoptosis. Mol. Cell Endocrinol. 172, 69–78 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Baudet, C. et al. Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. Cell Death Differ 5, 116–125 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Baudet, C. et al. 1,25-Dihydroxyvitamin D3 induces programmed cell death in a rat glioma cell line. J. Neurosci. Res. 46, 540–550 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Baudet, C. et al. Cytotoxic effects of 1 alpha,25-dihydroxyvitamin D3 and synthetic vitamin D3 analogues on a glioma cell line. Cancer Lett. 100, 3–10 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Maleklou, N., Allameh, A. & Kazemi, B. Targeted delivery of vitamin D3-loaded nanoparticles to C6 glioma cell line increased resistance to doxorubicin, epirubicin, and docetaxel in vitro. In Vitro Cell Dev. Biol. Anim. 52, 989–1000 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Alvarez‐Dolado, M., González‐Sancho, J., Navarro‐Yubero, C., García‐Fernández, L. & Muñoz, A. Retinoic acid and 1,25-dihydroxyvitamin D3 inhibit tenascin-C expression in rat glioma C6 cells. J. Neurosci. Res. 58, 293–300 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Naveilhan, P. et al. 1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Brain Res. Mol. Brain Res. 41, 259–268 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Rabizadeh, S. et al. Induction of apoptosis by the low-affinity NGF receptor. Science 261, 345–348 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Schall, T. et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61, 361–370 (1990).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Rao, J. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer 3, 489–501 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Suzuki, Y., Fujioka, K., Ikeda, K., Murayama, Y. & Manome, Y. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines. J. Clin. Neurosci. 41, 144–149 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Schiappacassi, M. et al. p27Kip1 expression inhibits glioblastoma growth, invasion, and tumor-induced neoangiogenesis. Mol. Cancer Ther. 7, 1164–1175 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Hu, P. et al. Acidosis enhances the self-renewal and mitochondrial respiration of stem cell-like glioma cells through CYP24A1-mediated reduction of vitamin D. Cell Death Dis. 10, 25 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Naveeilhan, P. et al. Induction of glioma cell death by 1,25(OH)2 vitamin D3: towards an endocrine therapy of brain tumors? J. Neurosci. Res. 37, 271–277 (1994).

    Article  Google Scholar 

  64. 64.

    Friedrich, M. et al. Vitamin D receptor (VDR) expression is not a prognostic factor in cervical cancer. Anticancer Res. 22, 299–304 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Friedrich, M. et al. Vitamin D receptor (VDR) expression is not a prognostic factor in breast cancer. Anticancer Res. 22, 1919–1924 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Villena-Heinsen, C. et al. Immunohistochemical analysis of 1,25-dihydroxyvitamin-D3-receptors, estrogen and progesterone receptors and Ki-67 in ovarian carcinoma. Anticancer Res. 22, 2261–2267 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Davoust, N. et al. Vitamin D receptor stable transfection restores the susceptibility to 1,25-dihydroxyvitamin D3 cytotoxicity in a rat glioma resistant clone. J. Neurosci. Res. 52, 210–219 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Neveu, I. et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 24, 70–76 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Neveu, I., Naveilhan, P., Baudet, C., Brachet, P. & Metsis, M. 1,25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport 6, 124–126 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Naveilhan, P., Neveu, I., Wion, D. & Brachet, P. 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 7, 2171–2175 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Singer, H., Hansen, B., Martinie, D. & Karp, C. Mitogenesis in glioblastoma multiforme cell lines: a role for NGF and its TrkA receptors. J. Neurooncol. 45, 1–8 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Brown M., et al. Regulatory effect of nerve growth factor in alpha9beta1 integrin-dependent progression of glioblastoma. Neuro-oncology.10, 968–980 (2008).

  73. 73.

    Lawn, S. et al. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J. Biol. Chem. 290, 3814–3824 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Jaiswal, P., Goel, A. & Mittal, R. Survivin: a molecular biomarker in cancer. Indian J. Med. Res. 141, 389–397 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Wiesenhofer, B., Weis, C. & Humpel, C. Glial cell line-derived neurotrophic factor (GDNF) is a proliferation factor for rat C6 glioma cells: evidence from antisense experiments. Antisense Nucleic Acid Drug Dev. 10, 311–321 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Magrassi, L., Butti, G., Pezzotta, S., Infuso, L. & Milanesi, G. Effects of vitamin D and retinoic acid on human glioblastoma cell lines. Acta Neurochir 133, 184–190 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Lavrenkov, K. National Library of Medicine (US). 201- Aug 13 -. Identifier NCT01181193, High-Dose Vitamin D in Combination With Chemoradiotherapy in the Treatment of Glioblastoma Multiforme (2011). https://clinicaltrials.gov/ct2/show/study/NCT01181193?term=Vitamin+D&cond=Glioma&draw=2&rank=1.

  78. 78.

    Ramesh K.R. National Library of Medicine (US). 2003 Sep 4 -. Identifier NCT00008086, A Phase I Trial of Subcutaneous And/Or Oral Calcitriol [(1,25-COH)2D3] and Carboplatin in Advanced Solid Tumors. (2013) https://clinicaltrials.gov/ct2/show/record/NCT00008086?term=Calcitriol&cond=Glioma&draw=2&rank=1.

  79. 79.

    Tavera-Mendoza, L. et al. Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc. Natl. Acad. Sci. USA 114, E2186–E2194 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Toptas, B. et al. The vitamin D receptor (VDR) gene polymorphisms in Turkish brain cancer patients. Biomed. Res. Int. 2013, 295791 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Kure, S. et al. Vitamin D receptor expression is associated with PIK3CA and KRAS mutations in colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 18, 2765–2772 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Affiliations

Authors

Contributions

C.L. wrote the paper; K.K. and G.L. reviewed the paper and provided critical revision. All authors read and approved the final paper.

Corresponding author

Correspondence to Gilberto Ka-Kit Leung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study does not require ethical approval.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lo, C.SC., Kiang, K.MY. & Leung, G.KK. Anti-tumor effects of vitamin D in glioblastoma: mechanism and therapeutic implications. Lab Invest (2021). https://doi.org/10.1038/s41374-021-00673-8

Download citation

Search

Quick links