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Colorectal cancer (CRC) is one of the most common cancers worldwide, and a leading cause of cancer deaths. Better classifying
multicategory outcomes of CRC with clinical and omic data may help adjust treatment regimens based on individual’s risk. Here, we
selected the features that were useful for classifying four-category survival outcome of CRC using the clinical and transcriptomic
data, or clinical, transcriptomic, microsatellite instability and selected oncogenic-driver data (all data) of TCGA. We also optimized
multimetric feature selection to develop the best multinomial logistic regression (MLR) and random forest (RF) models that had the
highest accuracy, precision, recall and F1 score, respectively. We identified 2073 differentially expressed genes of the TCGA RNASeq
dataset. MLR overall outperformed RF in the multimetric feature selection. In both RF and MLR models, precision, recall and F1 score
increased as the feature number increased and peaked at the feature number of 600–1000, while the models’ accuracy remained
stable. The best model was the MLR one with 825 features based on sum of squared coefficients using all data, and attained the
best accuracy of 0.855, F1 of 0.738 and precision of 0.832, which were higher than those using clinical and transcriptomic data. The
top-ranked features in the MLR model of the best performance using clinical and transcriptomic data were different from those
using all data. However, pathologic staging, HBS1L, TSPYL4, and TP53TG3B were the overlapping top-20 ranked features in the best
models using clinical and transcriptomic, or all data. Thus, we developed a multimetric feature-selection based MLR model that
outperformed RF models in classifying four-category outcome of CRC patients. Interestingly, adding microsatellite instability and
oncogenic-driver data to clinical and transcriptomic data improved models’ performances. Precision and recall of tuned algorithms
may change significantly as the feature number changes, but accuracy appears not sensitive to these changes.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer in both
U.S. men and women when excluding melanomas1. Genomic
medicine and predictive markers have greatly helped treat CRC2,3.
We have shown that pathologic staging is critical for prognostica-
tion of CRC4. However, the 5-year overall survival of CRC was still
only 64%5, and warrants identification of additional markers to
better classify treatment responses and guide CRC treatments.
Transcriptomic and genomic data have been increasingly

produced and used in recent decades6. However, there are
several major challenges in integrating clinicopathologic and
‘omics data for predicting clinical outcomes. Adding clinical data
to transcriptomic data seems not to improve accuracy in
classifying multicategory cancer outcomes7, but it is unknown
whether adding genomic data of oncogenic drivers would help
improve classification performance of statistical models. Moreover,
limited by the outcome data in datasets, a vast majority of
previous transcriptomic studies on CRC used binary or time-event

type outcomes8–16, while clinicians need to predict clinical
outcomes in much more details to better treat cancer patients
and inform them of the disease prognosis. Furthermore, feature
selection has greatly improved classification performances of
various models on transcriptomic and microarray data17–20.
However, it is largely unclear whether addition of other ‘omic
data change the number of selected features. To explore these
questions, we examined the performance metrics and optimal
feature numbers of the best models in classifying four-category
clinical outcomes of CRC before and after adding selected-
genomic and microsatellite instability (MSI) data to clinical and
transcriptomic data.
Machine learning (ML) algorithms produce a model that can

perform classification, regression, and other similar tasks based on
a given dataset, which can be used to predict the output of
another system or dataset21. We have shown that transcriptomic
data and clinical features can be used to accurately classify
outcomes of lung, prostate, and breast cancers7,22–24. However,
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most of the model tuning was focused on accuracy, which is
nonetheless very important. Additional metrics may be important
to better understand the performance of an algorithm, particularly
in imbalanced datasets25,26. Hence, we aimed to understand the
multimetric performance of random forests (RF) and multinomial
logistic regression (MLR) in classifying multicategory outcomes of
CRC patients, and how to select features for the best multimetric
performances such as accuracy, precision, recall, and F1. We also
compared the performance metrics of MLR and RF models and
obtained the range of clinical and molecular features that are
needed for best performance of each model.

METHODS
Data extraction
We obtained individual-level data of colorectal adenocarcinomas (pancancer
atlas) from The Cancer Genome Atlas Program (TCGA) through cBioPortal
repository (https://www.cbioportal.org/study/summary?id=coadread_tcga_
pan_can_atlas_2018, Fig. 1)27. The TCGA data were de-identified and
publicly available. Therefore, this study was categorized as an exempt study
(category 4) and did not require an Institutional Review Board (IRB) review.
The transcriptomic data (RNAseq V2) were processed and normalized using
RSEM (rsem.genes.normalized_results of the TCGA dataset), calculated into
z-score and dichotomized using the median z-score of all samples27.
We extracted the MSI statuses from a previous study on TCGA CRC that used

a nonnegative matrix factorization-based consensus clustering model28. We
also extracted the genomic data of 16 clinically-significant oncogenic-driver or
MSI-related genes, including KRAS, NRAS, BRAF, NTRK1, NTRK2, NTRK3, ERBB2,
POLE, MSH2, MSH6, PMS2, MLH1, APC, TP53, PIK3CA, and SMAD429–32. The
genomic data were standardized and annotated using Genome Nexus (which

utilizes VEP with the canonical UniProt transcript, https://github.com/mskcc/
vcf2maf/blob/master/data/isoform_overrides_uniprot). Any driver alternations
(amplifications, mutations, copy-number variation, and deletions) of these
oncogenic driver genes were determined using GISTIC 2.033.
We performed the differentially expressed genes (DEG) analysis to

remove the less relevant transcriptomes using Chi-square test7. The DEG
and clinico-pathological features were subject to the modeling alone or
with addition of the genomic and MSI data. The outcomes of the
classification models were the patients’ four-category survival, including
alive with no progression, alive with progression, dead with no known
progression, and dead with progression. All processes were conducted
using Python 3.6.9.

RF modeling
Tuning: We used the RandomForestClassifier from the Python Scikit-
learn package for RF modeling34. We used the Gini index as the split
criterion and had 20 iterations for each run.
During the tuning of the RF model, parameters including n_estimator

(the number of trees in the forest), min_sample_splits (the minimum
number of samples required to split an internal node), min_samples_leaf
(the minimum number of samples required to be at a leaf node), and
n_jobs (the number of jobs to run in parallel) were tuned.
To measure the accuracy of the model, we used cross_val_score

imported from the Scikit-learn package, which evaluated the accuracy of a
model using cross validation. We used a 5-fold cross validation, which
produced five separate accuracy values for each iteration of our tuning,
from which we took the average value.
We automated the tuning process. The pipeline first tuned n_estimator

(range of 5–195, with increments of 5) and min_sample_splits (range of
2–14). This was repeated twice. We then tuned min_sample_leaf (range of
1–25) and n_jobs (range of 1–14) three times. The pipeline automatically
selected the parameters which produced the highest average accuracy. To
obtain the feature importance from our model, we used the feature_-
importances_ property, which measured the Gini importance, the
impurity-based feature importance. Feature_importances was part of
RandomForestClassifier from the Scikit-learn Package. We ran the tuned RF
model 20 times to obtain the mean of the feature importance. We
obtained performance metrics, including accuracy, recall, precision, and
F1 score, using the cross_validate function imported from the sklearn.
model_selection package from Scikit-learn34.

Feature selection
Ranked approach, feature importance approach, and preset feature
selection were used for feature selection, with each approach described
in detail as following. The whole process of each approach was repeated
20 times. We then compared the performance metrics of the optimized
models based on all data versus clinical and transcriptomic data that
reached the best accuracy and precision, using Student t-test.

Ranked approach. We performed feature selection on the RF model using
our pipeline based on ranking. After sorting the features based on their
average feature importance, we created a number of reduced datasets.
The number of features in these datasets increased by an increment of 185
features. Thus, we created 11 reduced datasets (Supplementary Table 1).
During the process of feature selection, we tuned each reduced dataset
individually using the aforementioned tuning process. After tuning, we ran
the tuned model 20 times for each reduced dataset and collected the
performance metrics of the model.

Feature importance approach. We performed feature selection using our
pipeline based on the sum of the squared coefficients. Using the average
feature importance which we previously obtained for each individual
feature, we selected a number of sets of features using their feature
importance values as a cut-off. We created 11 selected datasets based on
the cut-off values (Supplementary Table 1). During the process of feature
selection, we tuned each reduced dataset individually using the tuning
process as described above. After tuning, we ran the tuned model 20 times
for each reduced dataset and collected the performance metrics of
the model.

Preset feature selection. We also performed feature selection using preset
parameters for the RF model. Using the reduced datasets created for the
feature importance approach, we set the values of n_estimator (range of
20–100, with increments of 20) and min_sample_split (range of 2–6, with

TCGA Colorectal Cancer cases (n=591)

Differentially Expressed Genes

Missing data (n=2)

Qualified cases (n=589) 

Create Random Forest Model

Tune Estimators (5 to 195, increments of 
5) and Split (2 to 14)

Tune Leafs (1 to 25) and Jobs (2 to 14)

Final model (Estimator = 45, Split = 4, 
Leaf = 1, Jobs = 4)

Repeat x 20 for Clinical Features 

Multinomial Logistic 
Regression 

Feature Selection with Automated Tuning:
Ranked and Feature-Importance 

Approaches

Feature Selection:
Ranked and Square-

Coefficient Approaches

Manually Tune Feature 
Selection Datasets

Fig. 1 Study flow. We extracted the colorectal adeno-carcinoma
cases in the cancer genome atlas (TCGA), and classified the patient
survival into four categories, including alive with no progression,
alive with progression, dead with no known progression, and dead
with progression. We used random forests (RF) and multinomial
logistic regression (MLR) to classify the four-category outcomes. The
10-fold cross-validation approach was used during the modeling of
the MLR model.
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increments of 2) of the RF model uniformly for all datasets to investigate
the nature and trends of dimension reduction in relation to tuning. The
model was run with each combination of the n_estimator and
min_sample_split values 20 times for all reduced datasets, and collected
the performance metrics of the model.

MLR modeling
Model setup: We performed MLR to compare the results from our RF
model with those from a more conventional model. We used LogisticRe-
gression from the sklearn.linear_model package of scikit-learn to create the
MLR model34. MLR is a conventional statistical model, which doesn’t need
to be tuned. We used train_test_split, cross_validate, and KFold from the

sklearn.model_selection package to split the dataset into the test and train
sets and perform a 10-fold cross validation. To extract the coefficient
values for the features that built the MLR model, we used.coef_ from the
LogisticRegression package.

Feature selection
Ranked approach. The pipeline using the ranked method was employed
to perform the feature selection for the MLR model. Using the coefficients
we obtained for each feature in a MLR, the pipeline sorted the features by
their coefficients for each of the four classes of clinical outcomes in
descending order. The pipeline then extracted the top and bottom
features from every class to create reduced datasets and perform feature
selection. We removed the duplicated features in each reduced dataset. To
this end, we created 14 reduced datasets (Supplementary Table 1). During
the process of performing Dimension Reduction, we ran the model 20
times for each reduced dataset and collected the performance metrics of
the model.

Squared coefficient approach. Using the coefficient values, we obtained
for each feature, the pipeline calculated the squared-coefficient of each
feature by adding together the squared values of the feature’s coefficient
for each class. Then, these features were sorted in descending order based
on their square-coefficient values. When creating the datasets, we selected
square-coefficient values to create reduced datasets containing the
features, whose square-coefficients were greater than the selected
threshold. Using these thresholds, we created 10 reduced datasets
(Supplementary Table 1). During the process of performing dimension
reduction, we ran the model 20 times for each reduced dataset and
collected the performance metrics of the model

RESULTS
Baseline characteristics
There were 2034 DEGs among the 17,501 genes that were subject
to RNAseq as shown by Chi-square test. The dataset had 589
cases, including 406 (68.7%) alive no disease, 65 (11.0%) alive with
disease, 35 (5.9%) dead no disease, and 85 (14.4%) dead with
disease (Table 1). There were 58 (9.9%) MSI-high CRC. The basic
characteristics of these cases are summarized in Table 1.

Genomic alterations of CRC driver genes
Among the 16 most frequently mutated or clinically significant
CRC driver genes, APC, TP53 and KRAS were the most frequently
seen, namely in 67% (393/589), 53% (312/589), and 38% (221/589)
of the tumors, respectively (Supplementary Fig. 1 and Supple-
mentary Table 2). The MSI related genes such as MSH2, MSH6,
PMS2, MLH1, and POLE each had a mutation frequency of 3–6%,
together accounting for about 8% of all tumors. The frequencies of
driver-mutations in KRAS G13D, KRAS Non-G13D, NRAS, BRAF V600E,
PKI3A, APC, and TP53 were 9.3% (55/589), 28.2 (166/589), 5.1% (30/
589), 8.2% (48/589), 22.9% (155/589), 64.9% (382/589), and 52.6%
(310/589), respectively. Interestingly, NTRK1, NTRK2, and NTRK3
driver mutations were seen in only 0.5% (3/589), 0% and 0% of the
tumors, despite their 2–5% of overall mutation-frequencies. The
most frequent genomic alteration of ERBB2, which is also clinically
known as HER2/Neu, was amplification (3.4%, 20/589), including
2.9% (17/589) with amplification only and 0.5% (3/589) with
amplification and mutation(s).

Tuning RF models
The RF model was tuned to find the best parameters to reach the
highest possible accuracy. Through tuning, we found that the
accuracy of the model can reach 69 or 70% when the parameters
n_estimator, min_sample_splits, and n_jobs were not too few (i.e.,
n_estimator > 15, min_sample_splits > 2, n_jobs > 1), and the
effect of min_samples_leaf to be less prominent when tuning
(Fig. 2A, B).
The model was also tuned for its temporal efficiency. When

the value of n_estimator was not too great (fewer than 130), the
temporal efficiency of the model can be within 4 s (Fig. 3A). The

Table 1. Baseline characteristics of the included colorectal cancer
cases by outcome.

Outcome Alive no
disease,
N (%)

Alive with
disease,
N (%)

Dead no
disease,
N (%)

Dead with
disease,
N (%)

Location

Colon 293 (72) 45 (70) 27 (77) 71 (85)

Rectal 113 (28) 19 (30) 8 (23) 13 (15)

Age (years)

33–60 136 (33) 27 (42) 1 (3) 23 (27)

61–72 146 (36) 19 (30) 11 (31) 20 (24)

73+ 124 (31) 18 (28) 23 (66) 41 (49)

Sex

Female 196 (48) 28 (44) 22 (63) 33 (39)

Male 210 (52) 36 (56) 13 (37) 51 (61)

Ethnicity

Unknown or
not Hispanic

223 (55) 45 (70) 31 (89) 42 (50)

Hispanic 183 (45) 19 (30) 4 (11) 42 (50)

Pathologic staging

1 90 (22) 6 (9) 5 (14) 2 (2)

2 162 (40) 24 (38) 12 (34) 21 (25)

3 112 (28) 20 (31) 14 (40) 24 (29)

4 42 (10) 14 (22) 4 (11) 37 (44)

Pathologic T category

T1 18 (4) 1 (2) 1 (3) 1 (1)

T2 87 (21) 7 (11) 6 (17) 2 (2)

T3 269 (66) 46 (72) 24 (69) 60 (71)

T4 32 (8) 10 (16) 4 (11) 21 (25)

Pathologic N category

N0 262 (65) 31 (48) 18 (51) 28 (33)

N1 97 (24) 14 (22) 7 (20) 23 (27)

N2 46 (11) 19 (30) 10 (29) 33 (39)

NX 1 (0)

Pathologic M category

M0 328 (82) 44 (69) 25 (76) 41 (49)

M1 33 (8) 13 (20) 1 (3) 35 (42)

MX 41 (10) 7 (11) 7 (21) 7 (8)

Radiotherapy

NA 65 (16) 2 (3) 13 (37) 21 (25)

No 324 (80) 53 (83) 22 (63) 62 (74)

Yes 17 (4) 9 (14) 1 (1)

Microsatellite instability

Stable 364 (90) 58 (91) 31 (89) 78 (93)

High 42 (10) 6 (9) 4 (11) 6 (7)
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effect of min_sample_splits was less prominent when tuning.
Results also showed that when the value of n_jobs was sufficiently
small (fewer than 10) and that of n_samples_leaf was sufficiently
large (greater than 5), the efficiency of the model can range from
1.8 to 2.6 s (Fig. 3B).
Based on tuning results, the RF model was tuned with

parameters n_estimator at 45, min_sample_splits at 4, min_sam-
ples_leaf at 1, and n_jobs at 4.
We performed 20 iterations of the tuned RF model, which

appeared to have similar performances according to the confusion
matrices and classification reports. Among these 20 iterations, the
best classification accuracy of the model was 76% and it had a
temporal efficiency of 2.57 s.
To evaluate the performance of a model, just looking at the

accuracy and temporal efficiency is not enough. The values of
precision, recall, and F1 all reflect the performance of the model in
classifying each category. For our RF model, the precision, recall,
and F1 in classifying alive with no progression were 76%, 99%, and
86%, respectively. However, the classification report also indicated
that our model cannot effectively classify the other three
categories (alive with progression, dead with no progression,
and dead with progression).
The datasets used in this study had 2034 and 2051 features

(also including MSI and 16 oncogenic-driver statuses), respectively.
The individual importance values of these features were extracted
and measured. The Gini importance of each individual feature was
measured and averaged after 20 consecutive repeats using the
tuned model
Using the average feature importance values, we obtained the

following important features from the clinical and transcriptomic
data that had the top feauture-importance values: path_stage 4,
path_n_stage 3, path_n_stage 1, COL11A2, SSX2IP, GSR, CYP46A1,

CCDC114, PSRC1, GABRD, GLT25D2, ASPDH, path_t_stage 4,
ARHGAP4, CLK2, FLJ43663, TLE6, age_3grp3, HIST1H2BE,
C20orf108, C15orf58, TP53TG3B, RBKS, and CD101; and obtained
the following from all data: path_m_stage2, path_stage4,
path_n_stage3, COL11A2, path_m_stage1, age_3grp3, C12orf69,
path_n_stage1, CCDC114, CLK2P, FLJ12825, ASPDH, EFNA2,
HIST1H2BE, path_t_stage4, ARHGAP4, CYP46A1, EVI5, CDHR2, and
MMAA (Supplementary Table 3).
During our manual tuning of the RF feature selection datasets

based upon feature importance, we found that the number of
features affected the parameters that led to the highest
performance (Supplementary Fig. 2). For each of the manually
tuned models, the datasets that underwent feature-selection
performed better than the datasets with the highest number of
features, which can be most clearly seen in the values of precision
(Supplementary Fig. 2). These observations underscore the
importance of feature selection before analysis to ensure its best
performance.
The MLR using clinical and transcriptomic data (Supplementary

Table 4) and all data (Supplementary Table 5) both showed that
the features with higher association with class 1 (alive with no
disease) usually had higher inversion association with classes 4
(dead with disease). Interestingly, some of the features were
important in both datasets including path_n_stage3, path_m_-
stage1, DCDC1, BRE, and TP53TG3B.
Using the sum of squared coefficients, we obtained the

following important features from the clinical and transcriptomic
data: path_stage 4, FLJ12825, KLF10, SLC5A5, path_n_stage1, GSR,
SLC38A7, TUBA1C, DPCR1, TSPYL4, ERLIN2, HBS1L, path_stage2,
LOC100130331, ZNF500, STOML1, TP53TG3B, TEX2, PPCDC, path_n_
stage3, FAM124A, SLC20A2, EIF4E3, and SLC22A4; and obtained the
following from all data: path_n_stage3, path_m_stage1, RRN3P2,

Fig. 2 Tuning the accuracy of the RF model. A Tuning the parameters n_estimators (from 5 to 195, in increments of 5) and min_sample_splits
(from 2 to 14, in increments of 1). B Tuning the min_samples_leaf (from 1 to 25, in increments of 1) and n_jobs (from 2 to 14, in
increments of 1).

Fig. 3 Tuning the RF model’s temporal efficiency. A Tuning the number of estimators and sample split. B Tuning the number of sample leaf
and jobs without using graphic processing unit. The time of each individual run was measured in seconds.
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GPR88, path_stage4, COMT, TP53TG3B, WBSCR17, BRE, GAS6,
path_m_stage2, MSMP, FAM195B, GPRIN3, HBS1L, ZNF101, MOSC1,
TSPYL4, TAS1R1, and KCNJ13 (Supplementary Table 6).
During our multimetric feature selection process on clinical and

transcriptomic data (Fig. 4) and all data (Fig. 5), we found that
accuracy remained relatively stable in RF models, while there were
clear accuracy peaks in the MLR models. Interestingly, the number
of features, that produced the best accuracy based on sum of
squared coefficients using clinical and transcriptomic data, also
produced the best precision and recall (Fig. 4D). Strikingly, the
highest precision and recalls of MLR models using clinical and
transcriptomic data after feature selection was 0.82 and 0.71,
respectively, which were much higher than those in the RF model,
while its highest accuracy was also higher than that of the RF
model (0.85 versus 0.72) (Fig. 4). Similar findings were also noted
in feature selection using all data (Fig. 5). These results indicate
that the MLR model has better performance than the RF model in
analyzing the datasets used in this study.
The best accuracy of all models and all datasets was achieved

using MLR based on ranking of coefficients and 825 features of all
data (0.855, Table 2), that also produced the highest precision

(0.832), F1 (0.738), and recall (0.698, tied with that of clinical and
transcriptomic data). Adding selected genomic and MSI data
slightly increased the best accuracy of each type of model and
feature selection approach except MLR models based on sum of
squared coefficients, as well as the best accuracy among all
models (0.855 for all data versus 0.844 for clinical and
transcriptomic data, P < 0.001, Table 2). Interestingly, the optimal
feature numbers before and after adding selected genomic and
MSI data seemed to be similar in all models except the RF model
based on importance values.

DISCUSSION
In this study, we examined the clinical and molecular features that
may be useful for classifying four-category survival outcome of
CRC using the TCGA data. We created four pipelines which
automated and optimized multimetric feature selection to identify
the best model with the highest accuracy and precision. Our data
show that the MLR models overall outperformed RF models in the
multimetric feature selection. The best model was the MLR one
with approximately 825 features based on sum of squared

Fig. 4 The accuracy remained relatively stable in some models using clinical and transcriptomic data, but showd peaks in others. Multi-
metric feature selection for classifying four category outcomes of the colorectal cancers based on the random forest (RF) model (A based on
ranking of feature importance; B based on feature importance) and multinomial logistic regression (MLR) model (C based on ranking of
features’ coefficients; D based on features’ sum of squared coefficients) using clinical and transcriptomic data.
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coefficients using all data, and attained the best accuracy of 0.855,
F1 of 0.738 and precision of 0.832, which were better than those
using clinical and transcriptomic data. A host of top features have
been identified (Supplementary Tables 2 and 3). The top-ranked
features in the MLR model of the best performance using clinical
and transcriptomic data were different from those using all data.
The pathologic stages, HBS1L, TSPYL4, and TP53TG3B were the
overlapping top-20 ranked features in the best performing models
using clinical and transcriptomic or all data.
We previously showed that, compared with transcriptomic data

alone, combination of clinical and transcriptomic data did not
significantly improve the accuracy of RF or MLR models for
classifying multi-category lung adenocarcinomas7. However, add-
ing MSI and selected genomic/oncogenic-driver data in this study
significantly increased accuracy, precision, and F1 of the best
feature-selection based MLR models, but not recall. The impor-
tance of alternations in MSI, TP53, PIK3CA, BRAF, and SMAD4 has
been shown before35–42, and may explain the increase in model
performance metrics. Indeed, the coefficients of PMS2L4 (inverse

correlation), TP53TG3B (inverse correlation), PIK3CA_DRIVER,
BRAF_DRIVER, and SMAD4_DRIVER were among the important
features as assessed by the sum of squared coefficients. On the
other hand, driver-alternations of KRAS, NRAS, NTRK1, NTRK2,
NTRK3, ERBB2, and APC were not among the top- or bottom-500
features, despite their clinical values29–32. One possible explana-
tion is that no targeted therapies of these alterations were
approved or widely used at the time when these TCGA CRC were
treated. Such a time-difference was also noted for the utilization of
radiotherapy. Interestingly, addition of MSI and selected
oncogenic-driver data significantly increased accuracy, recall,
and F1 of the best feature-selection based RF models, but not
precision. This difference may be attributable to the different
sensitivity of RF and MLR models to including more features in
imbalanced datasets. However, future studies are warranted to
examine the causes of these differences.
Despite the correlations in some top-ranked and bottom-ranked

features, the top-ranked features in an optimized, tuned model
may vary considerably by the databases and models’

Fig. 5 The accuracy remained relatively stable in some models using all data, but showd peaks in others. Multi-metric feature selection for
classifying four category outcomes of the colorectal cancers based on the random forest (RF) model (A based on ranking of feature
importance; B based on feature importance) and multinomial logistic regression (MLR) model (C based on ranking of features’ coefficients;
D based on features’ sum of squared coefficients), using clinical, transcriptomic, microsatellite instability and selected genomic/oncogenic-
driver data.
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parameters7,22–24. The same phenomenon was also observed in
this study. Interestingly, pathologic staging, HBS1L, TSPYL4, and
TP53TG3B have been ranked top 20 in the best models using
clinical+ transcriptomic and all datasets, respectively. They thus
may be the truly important features for classifying clinical
outcomes in CRC. This observation is partially supported by the
known prognostic values of pathologic staging for CRC
survivals4,43,44. However, the literature review shows that TSPYL4
is only reportedly important for prognosis of pancreatic and head
and neck cancers45,46, HBS1L(-MYB) is only found important for
risks of hepatocellular carcinoma and development of myelopro-
liferative neoplasms47,48, and TP53TG3B seems important only for
the prognosis of uterine corpus endometrial carcinoma and
hepatocellular carcinoma49,50. Therefore, the prognostic values of
TP53TG3B, TSPYL4 and HBS1L for CRC appear novel. Strikingly,
TSPYL4 and HBS1L are both located on chromosome 6 (6q22.1 and
6q23.3, respectively, www.genecards.org) and may be closely
related, while TP53TG3B is separately on 16p11.2. Future works
may be focused on TSPYL4 and HBS1L related drug development
and prognostic markers.
Most of the published works on feature selection were based on

LASSO51–53, RF17,54–58, support vector machine59–63, and incre-
mental recursive feature elimination64–67. In this study, we for the
first time compared the multimetric performances of RF and MLR
models. Despite the possible overfitting, MLR clearly outper-
formed RF after proper feature selection in all four examined
performance metrics. This will greatly enable us to rigorously
classify patients with CRC or other cancer for proper treatments. It
is particularly useful in the imbalanced datasets25,26.
Another strength of this study is to analyze outcomes in four

categories. Most, if not all, of the previous transcriptomic studies
on CRC focused on binary outcomes or time-events8–16. Thus, the
multicategory survival outcomes are poorly understood in CRC
patients, particularly regarding their associated clinical and
transcriptomic features. Our findings will shed light on how to
better manage and prognosticate CRC patients based on these
features. Indeed, it is possible that CRC patients who died with
disease may be under-treated or non-responsive to current
treatment regimens, while the ones who died without disease
may be over-treated or suffer other non-cancer causes. Therefore,
our optimized models for four-category survival outcome will help
stratify these patients and proper adjust their treatment regimens
according to the predicted outcome. The specific applications of
ML models, that are based on clinical and ‘omic data, may include:
1. To choose the treatment option(s) so that the patient would
stay alive without disease, or less preferably alive with disease; 2.
To deescalate current treatment-regimen and increase dosages or
treatment modalities for the patients who died without disease
and those who died with disease, respectively, in future studies or
practice; 3. To prepare the patients and their families with the
predicted four-category outcomes, such as death with disease or
alive with disease.
It should be mentioned that there are several limitations of this

study. First, we do not have an external test set, although we
rigorously examined the models using 5-fold cross-validation and
repeated the run for 20 times. Such a limitation is inevitable due to
the lack of high-quality large-scale ‘omic studies with detailed
patient outcomes. Second, the four-category outcome in this
cohort is not very balanced since nearly two thirds of the patients
were alive no disease at end of the follow-up period. Thus, the
model may be biased to better predict these patients, and less
powerful and less useful for the other categories of outcome (i.e.,
dead with or without disease, or alive with disease). Future large-
scale studies with balanced-outcomes are warranted to examine
our models and findings. Third, only one type of cancer is
analyzed here. It will be interesting to test whether our findings
hold true in other types of cancers. Fourth, adjuvant therapy data
were not available in the TCGA, and thus not included in theTa
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analyses despite their clinical values and our desire of including
them. It is also noteworthy that radiotherapy in this study (TCGA
cohort) was not used as often as nowadays. The main reason is
that the included CRC were treated in the 2000s31, when
radiotherapy was not used as widely as nowadays68, possibly
due to the lack of sufficient awareness, expertize, guidelines, and
resources. Fifth, the outcomes of cancer recurrence, metastasis
and specific causes of death will be more helpful than the four-
category outcomes of this dataset, but not available in any large-
scale ‘omic datasets. Future works should focus on generating this
kind of ‘omic datasets. The TCGA dataset also has the limitation
that scholars cannot assess its accuracy or explore further to fit
special needs. Finally, sample size of the TCGA cohort may be too
small despite its great values and wide use.
In summary, we here report a multimetric feature selection-

based MLR model using all data that outperformed RF models in
classifying four-category outcome of CRC patients. Adding MSI
and selected genomic/oncogenic-driver data increased the
performance metrics of RF and MLR models. We also showed
the association of feature number with models’ performance.
Approximately 600–1000 clinical and features are needed to reach
an optimal model with the highest accuracy, precision, and recall,
while more or fewer features would lead to lower accuracy,
precision, and recall. The model developed in this study has the
potential to be used to analyze other types of cancers. The top
important feature identified by the models we developed could
help understand colorectal tumorigenesis and guide CRC
treatments.
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