
ARTICLE

Development of an exosomal gene signature to detect residual
disease in dogs with osteosarcoma using a novel xenograft
platform and machine learning
Kelly M. Makielski 1,2,3,24✉, Alicia J. Donnelly1,2,3,16,24, Ali Khammanivong1,2,3,24, Milcah C. Scott1,2,3,17, Andrea R. Ortiz4,18,
Dana C. Galvan4,19, Hirotaka Tomiyasu1,2,3,20, Clarissa Amaya4, Kristin A. Ward4,21, Alexa Montoya4,22, John R. Garbe5,6, Lauren J. Mills3,7,
Gary R. Cutter8, Joelle M. Fenger9,10,23, William C. Kisseberth9,10, Timothy D. O’Brien1,3,11,12, Brenda J. Weigel1,3,7, Logan G. Spector3,7,
Brad A. Bryan4, Subbaya Subramanian 1,3,13 and Jaime F. Modiano 1,2,3,12,14,15

© The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2021

Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective osteosarcoma therapies is the lack of disease-
specific biomarkers to predict risk, prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles emerging
as powerful diagnostic tools. However, their clinical application is precluded by challenges in identifying disease-associated cargo
from the vastly larger background of normal exosome cargo. We developed a method using canine osteosarcoma in mouse
xenografts to distinguish tumor-derived from host-response exosomal messenger RNAs (mRNAs). The model allows for the
identification of canine osteosarcoma-specific gene signatures by RNA sequencing and a species-differentiating bioinformatics
pipeline. An osteosarcoma-associated signature consisting of five gene transcripts (SKA2, NEU1, PAF1, PSMG2, and NOB1) was
validated in dogs with spontaneous osteosarcoma by real-time quantitative reverse transcription PCR (qRT-PCR), while a machine
learning model assigned dogs into healthy or disease groups. Serum/plasma exosomes were isolated from 53 dogs in distinct
clinical groups (“healthy”, “osteosarcoma”, “other bone tumor”, or “non-neoplastic disease”). Pre-treatment samples from
osteosarcoma cases were used as the training set, and a validation set from post-treatment samples was used for testing, classifying
as “osteosarcoma detected” or “osteosarcoma-NOT detected”. Dogs in a validation set whose post-treatment samples were
classified as “osteosarcoma-NOT detected” had longer remissions, up to 15 months after treatment. In conclusion, we identified a
gene signature predictive of molecular remissions with potential applications in the early detection and minimal residual disease
settings. These results provide proof of concept for our discovery platform and its utilization in future studies to inform cancer risk,
diagnosis, prognosis, and therapeutic response.
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INTRODUCTION
Osteosarcoma is a rare disease that disproportionately affects
children, adolescents, and young adults1. More than half of
osteosarcoma patients relapse and die from metastatic disease
within 10 years of their initial diagnosis1,2, highlighting the need
for predictive biomarkers to personalize therapies. Previously, we
have identified evolutionarily conserved transcriptional programs

with high prognostic value; however, practical obstacles have
prevented their wide adoption into clinical practice3–5. Thus, it is
apparent that non-invasive tests that inform prognosis and
longitudinal remission status represent a continued unmet need
for osteosarcoma patients.
Serum exosomes can be used to address these unmet needs

in osteosarcoma6,7. Exosomes are secreted, membrane-bound
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vesicles measuring 30–200 nm in diameter that originate from the
fusion of multivesicular endosomes to the plasma membrane8.
Like other microvesicles, exosomal cargo includes RNA, DNA,
proteins, lipids, and cellular metabolites. Exosomes can be
powerful diagnostic tools. Specifically, they are stable in biological
fluids, can be efficiently and non-invasively isolated, and contain
cargo that can be significantly associated with disease states9–11.
Furthermore, the utility of serum exosomes as a diagnostic/

prognostic platform is independent of the source and function of
such cargo. There have been recent gains in enrichment of
exosomes and/or comparably sized microvesicles from blood,
plasma, and serum using instrumentation and methodology that
is routinely available in diagnostic laboratories9–11, allowing us to
envision applications of exosome diagnostics as a realistic goal.
However, the identification and differentiation of cargo originat-
ing from diseased cells (signal) from the background of normal
exosomes (noise) is still a major obstacle that precludes wide use
of exosomes in clinical laboratory medicine.
A significant challenge in osteosarcoma research is the

development of animal models that accurately represent the
complex biology involved in osteosarcoma growth and metastasis.
The total number of new human cases diagnosed each year in the
United States is low, resulting in a small number of human tumors
available for study1,5,12. Osteosarcoma incidence in dogs is
approximately 30 times higher than in people; with clinical and
molecular evidence to suggest that human and canine osteosar-
coma share many key features of tumor organization and disease
progression, dogs represent effective models to study these
important aspects about the natural history of this disease1,13–16.
Gene expression analysis demonstrated conserved, tumor-specific
molecular phenotypes in dog and human appendicular osteosar-
coma5. This is supported by a more recent study that assessed the
transcriptional variation in osteosarcoma tumor samples and cell
lines from humans and dogs, demonstrating a high interspecies
correlation3.
Previously, we developed a method to identify species-specific

messenger RNA (mRNA) sequences in tumor xenografts (tumor, or
donor species, and stroma, or host species)17,18. In the present
study, we further extended that method to serum exosomes,
allowing for identification of a tumor-specific five-gene signature
that accurately discriminates osteosarcoma tumor-bearing dogs
from dogs in other disease categories and dogs free of apparent
disease. Individually, none of the genes could reliably predict the
presence of osteosarcoma or minimal residual disease, but when
combined with machine learning the five-gene signature could
accurately predict the presence of residual disease in dogs
undergoing treatment for osteosarcoma. Overall, we demonstrate
the discovery of exosome-based biomarkers that have the
potential to identify the presence of cancer cells. We also show
that this discovery platform that can be used to identify
biomarkers to inform prognosis and guide treatment of osteo-
sarcoma in dogs, providing proof of concept to develop and apply
comparable approaches for human osteosarcoma patients.

MATERIALS/SUBJECTS AND METHODS
Cell culture
Two canine osteosarcoma cell lines, representing molecular
phenotypes associated with different biological behaviors (OS-1
and OS-2), were used in this study17. OS-1 and OS-2 are derivatives
of the OSCA-32 (Kerafast, Inc., Boston, MA, catalog #EMN003) and
OSCA-40 cell lines (Kerafast, Inc., catalog #EMN002), respectively.
OS-2 was previously shown to show features associated with
aggressive behavior, and OS-1 was shown to behave less
aggressively17. Specifically, in an osteosarcoma xenograft model,
OS-2 was shown to exhibit a more rapid growth at the primary
tumor site, and a greater propensity to metastasize to the lung17.

OS-1 and OS-2 cells were modified to stably express green
fluorescent protein (GFP; ThermoFisher Scientific, Waltham, MA)
and firefly luciferase (luc; ThermoFisher Scientific, Waltham, MA)
using a Sleeping Beauty transposon system. Cells (1 × 106) were
transfected with 1 µg of transposase-expressing pDNA vector,
Sleeping Beauty 100×, and 2 µg of the GFP/luc vector pKT2/CLP-
Luc-ZOG in 100 µL of nucleofector solution V (Lonza, Basel,
Switzerland, catalog #VCA-1003). Transfected cells were immedi-
ately placed into a pre-warmed growth medium, and the cells
were expanded using Zeocin (Invivogen, San Diego, CA, catalog
#ant-zn-05) selection medium. The transfected cells behaved as a
unimodal population by flow cytometry. Proliferation and
doubling time of the genetically modified cells were comparable
to those of the parental cells in vitro. GFP-luc transfected cells
were used for orthotopic IT injections in mice. Prior to mouse
injections, cells were grown in exosome-depleted DMEM media
containing 5% glucose and L-glutamine (GIBCO, ThermoFisher
Scientific, Waltham, MA, catalog #11965) supplemented with 10%
exosome-depleted fetal bovine serum (FBS) Media Supplement—
USA Certified (SBI, Palo Alto, CA, catalog # EXO-FBS-250A-1),
10 mM 4-(2-hydroxyethyl)−1-piperazine ethanesulphonic acid
buffer (HEPES; ThermoFisher Scientific, Waltham, MA, catalog
#15630) and 0.1% Primocin (Invivogen, San Diego, CA, catalog
#ant-pm-1), and cultured at 37 °C in a humidified atmosphere of
5% CO2. Each cell line had been passaged more than 15 times
since it was established; however, cell lines were repeatedly
authenticated at regular intervals based on short tandem repeats
(IDEXX BioResearch, Columbia, MO) to confirm stability during
experimentation.
Primary cultures of human pulmonary microvascular endothelial

cells (Lonza, Walkersville, MD, catalog #CC-2527) were grown in
EGM-2 Endothelial Cell Growth Medium-2 Bullet kit (Lonza).
Primary cultures of human pulmonary fibroblasts (Lonza, catalog
#CC-2512) were cultured in FGM-2 Fibroblast Cell Growth
Medium-2 Bullet kit (Lonza). For exosome-depleted conditions,
the FBS aliquot in each Bullet kit was excluded from the
growth media.

Exosome purification
Cells were cultured in exosome-depleted media and exosomes
were isolated using the ExoQuick TC kit (SBI, Palo Alto, CA, catalog
#EXOTC10A-1) according to the manufacturer’s instructions.

Immunohistochemistry and immunofluorescence
Human osteosarcoma tissue microarrays were obtained from US
Biomax (Rockville, MD, catalog #OS804), and were staged
according to the Musculoskeletal Tumor Society staging system.
Antigens were detected using IHC and quantified by the
previously described methodology19. For IF, cells were treated as
indicated and fixed in ice-cold paraformaldehyde solution.
Immunofluorescent detection of CD9, CD63, and CD81 was
performed using the EXOAB-KIT-1 (SBI, Palo Alto, CA, catalog
#EXOAB-KIT-1) and anti-phalloidin-conjugated secondary antibo-
dies. DAPI (4′,6-diamidino-2-phenylindole) counter staining was
used as a nuclear stain. The anti-human tetraspanin antibodies
used for IHC and IF cross-react against the canine proteins, where
each antibody recognizes unique proteins with the correct
electrophoretic mobility as determined by immunoblotting.

Electron microscopy
Exosomes were isolated from OSCA-40 cell culture supernatants
using the ExoQuick TC protocol, fixed in 2.5% paraformaldehyde,
and washed in phosphate-buffered saline (PBS). The exosomes
were suspended in Milli-Q water, immediately applied to a glass
slide, and allowed to air dry for 1 h. The slides were dehydrated
with ethanol, sputter coated with a gold layer, and imaged using a
Zeiss EVO scanning electron microscope.
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Immunoblotting
Immunoblotting was performed to confirm enrichment of tetra-
spanins (CD9, CD63, and CD81) and concurrent depletion of β-actin,
as indicators of the biochemical characteristics of exosomes reported
in the literature. Two hundred microliters of Pierce radioimmunopre-
cipitation assay buffer (ThermoFisher Scientific, Waltham, MA, catalog
#89900) combined with 1 µl of Halt protease inhibitor and 1 µl of Halt
phosphatase inhibitor cocktail (ThermoFisher Scientific, Waltham, MA,
catalog #78420) were added to cell or exosome pellets and vortexed
for ~15 s. The samples were incubated at room temperature for 5min
to allow complete lysis before pre-clearing nuclei and insoluble
material by centrifugation. The protein content was determined using
the bicinchoninic acid assay kit as recommended by the manufacturer
(ThermoFisher Scientific, Waltham, MA, catalog #23225). For immuno-
blotting, 50 µg of protein for each sample was diluted into Laemmli
buffer, heated at 95 °C, and then immediately chilled on ice before
loading onto the gels. SDS-PAGE electrophoresis and transfer to
polyvinylidene difluoride membranes were done using routine
protocols20. Membranes were blocked with 5% dry milk in Tris
Buffered Saline containing 0.05% Tween (TBS-T), followed by
overnight incubation at 4 °C with antibodies directed against CD9,
CD63, and CD81 (SBI, Palo Alto, CA, catalog #EXOAB-KIT-1) at 1:1000
dilution in TBS-T buffer containing 5% dry milk. Anti-β actin was used
as described21 to serve as a control for depletion of cytosolic proteins
in exosomes. Blots were washed and incubated for 1 h at room
temperature with a secondary goat anti-rabbit-HRP antibody at
1:20,000 dilution. The blots were finally incubated with chemilumi-
nescence substrate and visualized on a LI-COR Odyssey Imager (LI-
COR, Lincoln, NE).

Nanoparticle tracking
Exosomes were enriched from samples as detailed above and
resuspended in PBS to a total volume of 1 mL. The size distribution
of extracellular vesicles was measured using a NanoSight
Nanoparticle Tracking Analyzer (Salisbury, UK), using the settings
recommended by the manufacturer. Size, frequency, and distribu-
tion measurements were recorded in triplicate for each sample
and were analyzed by the built-in NanoSight Software.

Plasmids and transfection
Transduction of osteosarcoma cells with genes encoding tetra-
spanins, which are enriched in exosomes, was performed using
the pCT-CMV-GFP-MCS-EF1α-Puro lentiviral system (SBI, Palo Alto,
CA, catalog #CYTO800-PA-1) as described22. Puromycin was used
to select for stably transfected cells, and cells were grown in
exosome-depleted media prior to exosome collection.

Tumor xenografts
Six-week-old, female, athymic nude mice (strain NCr nu/nu) were
obtained from Charles River Laboratories (Wilmington, MA).
Animals were assigned to separate cages in random order for
each experiment. All mouse experiments were approved by The
University of Minnesota Institutional Animal Care and Use
Committee (Protocols 1307-30806A, 1606-33857A, and 1803-
35710A). For intratibial (IT) injections, mice were anesthetized
with xylazine (10 mg/kg, intraperitoneally (IP)) and ketamine (100
mg/kg, IP) in preparation for orthotopic IT injections. Canine
osteosarcoma cells were suspended in sterile PBS (ThermoFisher
Scientific, Waltham, MA, catalog #10010049) and 10 µL containing
1 × 105 cells were injected IT as previously reported17,21. Control
mice had 10 µL sterile PBS injected IT. All injections were
administered into the left tibia using a tuberculin syringe with
29-gauge needle. For each osteosarcoma cell line, OS-1 and OS-2,
five mice received cell-IT injections; three mice received sham
(PBS)-IT injections. Buprenorphine (0.075 mg/kg, IP every 8 h)
(Reckitt Benckiser Healthcare, Richmond, VA) was administered for
analgesia for 24 h following the injections, and prophylactic
ibuprofen was administrated in the water for the next 3 days. Mice

were monitored by weekly bioluminescence imaging and tumor
size measurements. At 8 weeks after the injections, the mice were
humanely euthanized using a barbiturate overdose. Blood was
collected via intracardiac phlebotomy. The tibiae and the lungs
were collected from mice injected with osteosarcoma cells (n= 5
for each cell line) and placed in 10% neutral buffered formalin for
histopathology or stored at −80 °C. The presence of tumors was
confirmed histologically.

Osteosarcoma xenograft serum exosome enrichment and RNA
extraction
Exosomes were enriched from serum samples from control mice
and from tumor-bearing mice at week 8 using ExoQuick reagent
(SBI, Palo Alto, CA, catalog #EXOQ5A-1) according to the
manufacturer’s instructions. Briefly, serum was mixed with
ExoQuick reagent at a volume of 252 µL ExoQuick per 1 mL of
serum. The mixture was incubated for 30min at 4 °C, followed by
centrifugation at 1500 × g for 30 min to enrich exosomes. The
resulting supernatant was discarded, and the tubes were
centrifuged for an additional 5 min at 1500 × g to remove any
remaining supernatant. Exosomal RNA was extracted using
SeraMir ExoRNA Amp Kit (SBI, Palo Alto, CA, catalog #RA800A-1),
according to the manufacturer’s instructions.

Library preparation and next-generation sequencing
Pooled serum from each group was sequenced and analyzed.
Sequencing libraries were prepared using the Clontech SMARTer®

Stranded Total RNA-Seq Kit v2-Pico Input Mammalian kit (Takara
Bio, Kasatsu, Japan). RNA sequencing (50-bp paired-end, with
HiSeq 2500 Illumina) was performed at the University of
Minnesota Genomics Center. A minimum of 16 million read-pairs
was generated for each sample and the average quality scores
were above Q30 for all pass-filter reads.

Bioinformatics analysis
Initial quality control analysis of RNA sequencing FASTQ data were
performed using FastQC software (v0.11.5). FASTQ data were
trimmed with Trimmomatic (v0.33.0). Kallisto (v0.43.0) was used
for pseudoalignment and quantifying transcript abundance. For
accurate alignment of sequencing reads to canine and murine
genes, a kallisto index was built from a multi-sequence FASTA file
containing both the canine (CanFam3.1) and murine (GRCm38.p5)
genomes. For each species, transcripts <200 bp were removed
from the FASTA files. The masked FASTA files were then merged
for a total of 121,749 murine and canine transcripts. Insertion size
metrics were calculated for each sample using Picard software
(v1.126). Data is available on the NCBI Gene Expression Omnibus
(GEO; accession #GSE183191). The ‘DESeq2’ package in RStudio
was used for differential analysis of transcript counts obtained
from kallisto. Transcript counts were first summarized to gene
counts and then DESeq2 was used to convert count values to
integer mode, correct for library size, and estimate dispersions and
log2 fold changes between comparison groups. Genes with a
Benjamini–Hochberg adjusted p value <0.05 and log2 fold change
>±4 between control and xenograft samples were considered
significantly differentially expressed transcripts. Statistically differ-
entially expressed canine genes were removed if they had a
DESeq2 normalized value of greater than zero in the control group
(mouse sequences) as these would be highly homologous genes
between the mouse and dog. Counts per million values of genes
were log2 transformed and mean centered prior to clustering. The
ComplexHeatmap package was used for clustering and creating
heatmap figures. Enriched pathway and functional classification
analyses of differentially expressed transcripts were performed
using QIAGEN’s Ingenuity® Pathway Analysis (IPA®; QIAGEN,
Redwood City, CA). The reference set for all IPA analyses was
the Ingenuity Knowledge Base (genes only). Canine-associated
gene names were used as the output format for input datasets
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with canine genes and murine-associated gene names were used
as the output format for input datasets with murine genes.

qRT-PCR validation of sequencing data
Serum or plasma samples were obtained from client-owned dogs
with naturally occurring osteosarcoma before and after treatment
as part of routine biobanking efforts. The samples included in the
analysis were identified retrospectively. Serum samples were also
obtained and biobanked from client-owned dogs that were
hospitalized with various non-malignant conditions. For healthy
controls, serum samples were obtained from staff- and student-
owned dogs with no apparent disease. The samples were divided
into a training set and a test set. The training set included dogs in
one of four categories (“osteosarcoma”, “other neoplasia”, “non-
neoplasia”, and “healthy” (dogs with no apparent disease)).
Osteosarcoma dogs had a primary tumor of bone and were
treatment naive (Table 1). The test set included samples from dogs

with osteosarcoma, after treatment (n= 24; Table S1). Blood was
collected into vacutainer tubes that were centrifuged at 3000 × g
for 15 min. Aliquots of serum or plasma were transferred to 1.5 mL
microcentrifuge tubes and stored at −80 °C until analysis. All
treatment decisions were at the discretion of the attending
clinician. All procedures were approved by the Institutional Animal
Care and Use Committees of The University of Minnesota under
protocols 0802A27363, 1101A94713, 1312-31131A, 1504-32486A,
1702-34548A, 1803-35759A, and 2003-37952A and The Ohio State
University 2010A0015-R2 and 2018A00000100. Exosomes were
precipitated from canine serum or plasma samples using ExoQuick
serum reagent (SBI, Palo Alto, CA, catalog #EXOQ5A-1) according
to the manufacturer’s instructions. Additional steps were included
for plasma samples: 10 µL of thrombin (SBI, Palo Alto, CA, catalog
#TMEXO-1) was added for each 1mL of plasma. The sample was
then mixed at room temperature for 5 min, followed by
centrifugation at 10,000 rpm for 5 min. The supernatant was

Table 1. Clinical characteristics of enrolled dogs.

Osteosarcoma
(n= 28)

Non-neoplastic
disease
(n= 10)

Other neoplasia
of bone
(n= 2)

No apparent
disease
(n= 13)

Breed Golden retriever n= 6 n= 1

Labrador retriever n= 3 n= 1 n= 1 n= 4

Greyhound n= 3 n= 1

Doberman n= 2

Great Dane n= 2

German Shepherd n= 2

Other purebred n= 6 n= 6 n= 4

Mixed breed n= 6 n= 1 n= 1 n= 3

Tumor location Humerus n= 8 n/a n/a

Radius n= 7 n= 1

Ulna n= 2

Femur n= 2 n= 1

Tibia n= 7

Fibula n= 1

Mandible n= 1

Sex Intact female n= 1

Spayed female n= 15 n= 7 n= 6

Intact male n= 1 n= 1

Castrated male n= 12 n= 2 n= 2 n= 6

Age (years) Mean 7.2 10.6 6.1

Median 7.4 11.0 4.8

Range 2.3–11.0 7.0–14.0 3.1, 11.1a 2.3–14.3

Body weight (kg) Mean 39.0 30.3 29.8

Median 34.3 29.7 26.7

Range 19.5–72.0 16.0–46.3 31.2, 35.0a 14.9–45.0

Time between pre- and post-tx
samples (days)

Mean 162 n/a n/a n/a

Median 39

Range 2–984

n/a n= 5

Non-osteosarcoma disease Benign splenic lesion n/a n= 5 n/a n/a

Lipoma n= 2

Other benign lesion n= 3

Non-osteosarcoma neoplasia
of bone

Metastatic carcinoma n/a n/a n= 1 n/a

Hemangiosarcoma n= 1
aMean and median values are not listed for the “Other neoplasia of bone” category, as only two dogs were enrolled in this group.
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transferred to a new microcentrifuge tube, and the volume
recovered was noted. Plasma and serum samples were subse-
quently treated the same. Briefly, the sample was mixed with
ExoQuick reagent at a volume of 252 µl ExoQuick per 1mL of
serum. The mixture was incubated for 30min at 4 °C, followed by
centrifugation at 1500 × g for 30min to precipitate exosomes. The
resulting supernatant was removed and discarded, and the tubes
were centrifuged for an additional 5 min at 1500 × g to remove any
remaining supernatant. Exosomal RNA was extracted using the
mirVana miRNA Isolation Kit (Ambion, ThermoFisher Scientific,
Waltham, MA), according to the manufacturer’s instructions.
Elimination of genomic DNA and reverse transcription were both
carried out using QuantiTect Reverse Transcription Kit (Qiagen,
Valencia, CA). Real-time quantitative reverse transcription PCR (qRT-
PCR) was performed on a LIGHTCYCLER 96 (Roche, Indianapolis, IN)
with FastStart SYBR Universal Green Master Mix (Roche, Indianapo-
lis, IN) Protocol. GAPDH was used as the reference standard for
normalization23 and relative levels of steady-state mRNA were
established using the comparative [delta]Ct method. The relation-
ship between RNA-sequencing data and qRT-PCR values for the
transcripts of interest were analyzed using Pearson’s correlation.

Machine learning
Gene expression data from samples of dogs with “no apparent
disease” (healthy, n= 13), non-neoplastic/benign conditions
treated with surgery (diseases other than cancer; n= 10),
osteosarcoma (n= 27), and other neoplasia (non-osteosarcoma
cancers; n= 2) pre-treatment samples (52 total) normalized to
GAPDH (as internal control) were used to train and build different
machine learning models. The normalized data were further
transformed using three-component linear discriminant analysis
(LDA). Different machine learning algorithms were then tested and
compared to identify the top-performing predictive models that
fit well with our data, including logistic regression (LR), LDA,
k-Nearest Neighbors (KNN), Decision Tree, Gaussian Naïve Bayes,
support vector machine, bagging (BAG), Random Forest (RF), Extra
Trees (EXT), adaptive boosting, stochastic gradient boosting,
neural network, Ridge regression, and stochastic gradient descent
classifiers Scikit-learn Python package (http://scikit-learn.
sourceforge.net)23. For training and optimization, the training
dataset was randomly split into training and validation sets using
k-fold cross-validations with sample stratification (when possible).
k-fold cross-validation randomly splits data into k groups, where
k− 1 groups were used for training and one remaining group was
used for validation; repeated for k times with each of k validation
sets being used only once. The k-fold cross-validation was then
repeated and averaged across 100 iterations with random
shuffling in between to ensure performance stability across
multiple tests. For this study, a tenfold cross-validation was used.
Top models with the best-averaged sensitivity and specificity were
chosen for further optimization and testing. The sensitivity was
calculated based on the equation true positives/(true positives+
false negatives) and the specificity was true negatives/(true
negatives+ false positives)24. True positives were defined as
the classification accuracy for osteosarcoma and true negatives
were defined as the classified accuracy of non-osteosarcoma.
Predictive power was also estimated for the final top-performing
models based on their positive (PPV) and negative (NPV)
predictive values. The PPV was calculated as true positives/(true
positives+ false positives) and NPV was true negatives/(true
negatives+ false negatives)24. Data from the unknown samples
(post-treatment osteosarcoma subjects) were transformed based
on the fitted training set and classified using the top trained
learning models. The resulting classification calls were further
tested against survival data of the post-treatment osteosarcoma
subjects over time as a means for establishing the significance
that (detectable) minimal residual disease had on event-free
survival times.

Post-treatment osteosarcoma samples classified as “osteosar-
coma” by all of the selected top machine learning models (either
most accurate or most sensitive) were considered to be
“osteosarcoma-detectable”. Post-treatment osteosarcoma samples
that received another classification by one or more of the top
models were considered to be “osteosarcoma-NOT detectable”.
Kaplan–Meier survival analysis was performed using R packages
survival (v3.27) and survminer (v0.48). A log-rank (Mantel-Cox) test
was used to compare event-free survival times between dogs
whose post-treatment samples were considered “osteosarcoma-
detectable” and dogs whose post-treatment samples were
considered “osteosarcoma-NOT detectable”.

RESULTS
Exosome production by osteosarcoma cells is positively
correlated with tumor aggressiveness
Previous studies have documented a quantitative relationship
between tumor aggressiveness and the amount of exosomes
produced11. To investigate this in the context of osteosarcoma, the
presence of tetraspanins CD9 and CD63, two transmembrane
proteins that are enriched in exosomes and other microvesicles,
was quantified in 80 human osteosarcoma samples using
immunohistochemistry (IHC) (Fig. 1A, B). The data show that stage
III tumors stained more robustly for both CD9 and CD63 than stage
I or stage II tumors (Fig. 1A, B), suggesting that a positive
relationship between total detectable exosomes or exosomal
protein and tumor stage also exists in osteosarcoma. To further
delineate the functional involvement of exosomes in the progres-
sion of osteosarcoma, we sought to use a more tractable in vivo
model system for exosome biomarker discovery. Given the
molecular and biological similarities between human and canine
osteosarcomas12,16, a spontaneous canine model was used for our
studies. Our immediate next experiments were thus devoted to
characterizing canine osteosarcoma-derived exosomes and to
confirm their conserved roles in the biology of the disease6,7. We
first validated exosome production by canine osteosarcoma cell
lines using immunofluorescence (IF). Previous experiments showed
that the biologic behavior of the primary tumors was conserved in
the cell lines, with OSCA-40 being more aggressive, as it formed
tumors that grew rapidly and showed a greater propensity for
pulmonary metastasis than two counterparts, called OSCA-32
(a.k.a., OS-1) and OSCA-8, in an orthotopic xenograft model17,21.
Fig. S1 shows positive staining for CD63, CD9, and CD81 in secreted
microvesicles from OSCA-32 and OSCA-40 canine osteosarcoma
cell lines by IF and was further confirmed by immunoblotting
(Fig. 2B, and data not shown). Our results indicate the conservation
of tetraspanins in extracellular vesicles, most likely representing
exosomes, from humans and dogs.
We then aimed to confirm the physical properties of canine

osteosarcoma-derived extracellular vesicles as exosomes, such as
enrichment of tetraspanins (CD9, CD63, and CD81) with con-
current depletion of β-actin, as well as their shape, structure, and
size. We utilized scanning electron microscopy (SEM), NanoSight
particle tracking analysis, and immunoblotting to validate
exosome enrichment from cell lines and from serum (Fig. 2A–C
and Fig. S2). SEM showed spherical microvesicles between 100
and 200 nm in diameter; this size and shape was consistent with
that predicted for exosomes (Fig. 2A). In addition, immunoblotting
showed enrichment of CD63 and depletion of β-actin in the
osteosarcoma cell line-derived exosomes relative to the whole-cell
lysates (Fig. 2B). Exosomal enrichment of tetraspanins, including
CD9, CD63, and CD81, with concurrent depletion of β-actin, is
consistent with what is reported in the literature for exosome
validation8. Finally, nanoparticle tracking analysis showed that the
mean vesicle size ranged from 149 to 180 nm with a mode of
117–132 nm, (Fig. 2C). This range is similar to the microvesicle size
determined by SEM and is also consistent with the expected size
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of exosomes25–32. We also confirmed that exosomes enriched
from serum samples of a dog with osteosarcoma and a dog with
no evidence of disease have size distributions comparable to cell
line-derived exosomes, as determined by nanoparticle tracking
(Fig. S2). In all, these findings support the methodology used for
exosome enrichment from cell lines and from serum samples.

Osteosarcoma-derived exosomes can be internalized by
stromal cells to modulate gene expression and induce
invasive cell behavior
The high propensity for distant metastatic growth in both human
osteosarcoma patients and dogs with osteosarcoma has been well

documented and is a key factor in survival rates1,2,33. The
importance of exosomes in promoting a pre-metastatic niche
has been characterized in pancreatic cancer34,35 as well as
melanoma36. However, the ability of osteosarcoma exosomes to
influence the complex cascade of events that occurs during
metastasis, particularly their impact on stromal cells within the
microenvironment, is still being determined. Baglio et al. docu-
mented the ability of osteosarcoma-tumor extracellular vesicle-
educated mesenchymal stem cells (MSCs) to promote tumor
growth and metastasis in an orthotopic xenograft mouse model of
osteosarcoma37. The importance of cancer-associated fibroblasts
and endothelial cells in tumor progression has been well

Fig. 1 Exosome production by osteosarcoma cells is positively correlated with tumor progression. A Representative images from
exosome-specific staining in human osteosarcoma tissues. Brown staining indicates positive detection of exosomes. B Tissue biopsy samples
from human osteosarcoma patients were stained for the presence of exosome markers CD9 and CD63. Box and whisker plots indicate the IHC
expression level of the two exosome markers across the stage I, II, and III osteosarcomas.

Fig. 2 Physical and biochemical characterization of osteosarcoma exosomes. A Scanning electron micrographs of OSCA-40 exosomes. B
Immunoblotting of exosome preparations documenting enrichment of tetraspanins (CD63) and depletion of β-actin in OSCA-8, OSCA-32,
OSCA-40, and OSCA-78 dog osteosarcoma cell lines. C NanoSight particle tracking analysis of triplicate samples each of osteosarcoma cell
lines OSCA-8, OSCA-32, OSCA-40, and OSCA-78, showing modal diameters of approximately 130 nm.
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described38, making them a useful model system to investigate
exosome internalization and influence on cell behavior. Ascertain-
ment that secreted tumor-derived exosomes can be taken up by
stromal cells in the organ that is the major target of metastasis
requires a method to track tumor-specific exosomes. This was
accomplished by transfecting canine osteosarcoma cells with
CD81 linked to a GFP tag.
Expression of the fusion protein in transfected OSCA-40 cells,

and its incorporation into secreted microvesicles, were visualized
using IF microscopy (Fig. S3A). Lung stromal fibroblasts and lung
endothelial cells were selected as the most relevant target cells for
analysis. Figure S3B–E shows that GFP-positive osteosarcoma-
derived exosomes were internalized by human pulmonary
fibroblasts or human pulmonary endothelial cells within 6–8 h,
with nearly 100% of the target cells showing GFP expression
by 24 h.

Serum-derived exosomal canine gene signatures identified in
mouse xenografts are associated with osteosarcoma
The in vitro data suggested that exosomes influence the tumor
microenvironment; however, it remained unclear if these studies
were directly translatable to in vivo studies where tumor cells
maintain a series of complex relationships within their local
environment. To address the concerns of in vitro translatability, a
previously described orthotopic intratibial xenograft mouse model
was utilized17,21. Briefly, we established xenografts in nude mice
using two canine osteosarcoma cell lines with different metastatic
propensities, collected serum exosomes from these mice and from
sham-treated controls (injected intratibially with PBS), and
performed next-generation sequencing to characterize the full
complement of exosomal mRNAs derived from the tumors, as well
as from the host response17. Predictably, no xenograft (canine)
mRNAs were detectable in sera from the mice prior to tumor
implantation, but canine mRNAs were readily apparent in sera

from mice with established tumors (Fig. 3A). Interestingly, the
exosomal transcripts identified in cultured canine osteosarcoma
cells showed only minimal overlap (1.4%) with the exosomal
transcripts derived from the same canine cell lines when they
formed tumors in vivo (data not shown), suggesting that the
microenvironment is a major factor influencing exosome loading.
Further analysis identified groups of canine exosomal mRNAs with
correlation scores >0.8 that were part of canonical signaling
pathways including cell death, cell signaling, metabolism, and
immune response. Changes in the mRNA content of host
exosomes were also detectable. Thirty-eight differentially
expressed mouse mRNAs were identified in exosomes from
animals bearing xenografts when compared to the sham-treated
controls (Fig. 3B). These mRNAs were primarily associated with
immune signaling, including IL-12 signaling, and cellular metabo-
lism (Fig. 3C), as well as macrophage activation and stromal cell
activity. Intriguingly, atherosclerosis signaling pathways, as well as
cholesterol and fat pathways (LXR, FXR) were also identified;
however, we suspect this is related to the activation of
macrophage-driven processes.

A five-gene “osteosarcoma-detectable” signature predicts
prognosis in dogs with osteosarcoma after treatment
After validating the enrichment of exosomes with tetraspanins,
we then looked for differences within exosome cargo that allowed
for the determination of an osteosarcoma-specific gene signature.
The absence of biomarkers to guide treatment is a major obstacle
that has hindered progress in osteosarcoma therapy for dogs and
humans alike. We believe that clusters of co-expressed exosomal
mRNAs could provide such biomarkers, independent of their
biological function. Twenty-five canine mRNAs were reproducibly
identifiable and highly expressed in tumor-derived serum
exosomes (i.e., were always present in sera from mice with canine
osteosarcoma tumors, but not in sera from sham-treated mice,

Fig. 3 Detecting biomarkers of disease and host response. Heatmap of 25 differentially expressed dog transcripts (A) and 38 differentially
expressed mouse transcripts (B) identified by statistical testing with ‘DESeq2’. Colored toe bars represent the different experimental samples.
Asterisks in (A) indicate the genes incorporated into the osteosarcoma gene signature. The color-coded (red to blue) scale represents ±change
gene expression. C Pathways identified by Ingenuity® Pathway Analysis as being associated with differentially expressed host (mouse) genes.
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Fig. 3A). To build a diagnostic biomarker set, we narrowed the list
to the ten mRNAs with the highest expression, with low inter-
sample variation. Five of the ten mRNAs, representing transcripts
from the SKA2, NEU1, PAF1, PSMG2, and NOB1 genes were
determined to be suitable candidates for the biomarker set by
virtue of being detectable in serum exosomes derived from dogs
with osteosarcoma.
“In-species validation” was done by evaluating abundance of

these five exosomal mRNAs in 80 archival serum and/or plasma
samples from 53 dogs divided into four groups. The clinical
characteristics of enrolled dogs are shown in Table 1. Serum or
plasma samples were included as available in sample archives,
and plasma samples were treated with the addition of thrombin to
precipitate clotting factors; thereafter the samples were treated
similarly, as detailed in the “Materials/subjects and methods”.
Serum and plasma samples were available for simultaneous
testing in a limited number of cases, and the results were
concordant. The first group consisted of 28 samples from dogs
with osteosarcoma. Of these, 26 included serum or plasma
collected prior to and at various time points after treatment
(amputation ± chemotherapy) ranging from 2 to 984 days (med-
ian= 37), one only included serum collected before treatment,
and one only included serum collected after treatment. The
second group consisted of 10 samples from dogs that had been
diagnosed with non-neoplastic diseases. The third group con-
sisted of two samples from dogs with intramedullary soft tissue
sarcomas (metastatic carcinoma and hemangiosarcoma, the latter
of which had pre- and post-treatment samples). The fourth group
consisted of 13 samples from dogs with no apparent disease,
included as unaffected controls (henceforth referred to as
“healthy”) (Table 1).
Figure 4A–E shows the relative abundance of each of the five

mRNAs in the biomarker set, measured by qRT-PCR, in serum
exosomes from each subgroup of dogs; Fig. 4F shows the relative
contribution of each of these mRNAs based on the F-values from
the analysis of variance (ANOVA) as applied to the machine
learning training algorithms described below.
To develop a predictive diagnostic tool to identify dogs with

osteosarcoma and distinguish osteosarcoma from the other
conditions under test, we built and compared different machine
learning models using 53 samples as a training set. These samples
included those from “healthy” dogs, dogs with non-neoplastic
diseases (“non-neoplasia”), dogs with intramedullary soft tissue
sarcomas (“other neoplasia”) and dogs with osteosarcoma prior to
treatment (“pre-treatment osteosarcoma”) as a training set to
build machine learning models. Stratified tenfold cross-validation
analysis of the training set was performed across 14 different
machine learning algorithms based on the five-gene features
combined with 3-component LDA-transformation and repeated
for 100 iterations with shuffling in between (Fig. 5). The top-
performing models based on sensitivity and specificity were KNN,
BAG, RF, and EXT classifiers (Fig. 5, red dashed boxes). The three
most sensitive models were LR, LDA, and ridge (RDG) classifiers
(Fig. 5, blue dashed boxes). The mean sensitivity (the prediction
accuracy for “osteosarcoma”) for the top-performing models
ranged from 72 to 82%, while the mean specificity (“non-
osteosarcoma”) was between 44% and 51%. The lower specificity
was largely due to poor classification of “non-neoplasia” and
“other neoplasia” groups as compared to “healthy” and “osteo-
sarcoma” (Fig. S4). When the prediction for “healthy” (i.e., dogs
with no apparent disease) was analyzed independently, the mean
specificity was indeed higher at around 60% for the top four
models (Fig. S4A), while the prediction accuracy for “non-
neoplasia” and “other neoplasia” was only between 0 and 2%
(Fig. S4B). While the mean specificities for the most sensitive
models (LR, LDA, and RDG) were below 25%, their mean
sensitivities were ≥89%. To show that the results were dependent
on the relevant groups in the training set, group assignments

were randomized. The machine learning performance was greatly
affected following data randomization, showing a significant
reduction in both sensitivity and specificity (Fig. S5).
The top-performing algorithms were chosen based on their

sensitivity and specificity values for further validation (Fig. 6). The
chosen top four algorithms (KNN, RF, BAG, and EXT) were then
retested individually, by the Majority Rule voting approach, and by
all-or-none calling method using 10-fold cross-validation with 10
randomized iterations and summarized based on their predictive
power, shown as PPV and NPV (Fig. 6A). LR, LDA, and RDG
were chosen as the three most sensitive algorithms and retested
for their predictive power (Fig. 6B). We then utilized the post-
treatment osteosarcoma samples (n= 24; Table S1) to evaluate
the ability of the “osteosarcoma-detectable” signature to
predict the presence of minimal residual disease after treatment,
and its relationship to event-free survival outcomes (i.e., duration
of remission, Table S1). The data were analyzed to form Kaplan-
Meier survival curves using the top four performing algorithms
and the three most sensitive algorithms (Fig. 7A, B). For this
analysis, post-treatment osteosarcoma samples that were classi-
fied as “osteosarcoma” by all four models (either best performing
based on sensitivity and specificity (Fig. 5, red dashed lines) or
most sensitive (Fig. 5, blue dashed lines)) were considered to be
“osteosarcoma-detectable”, and post-treatment osteosarcoma
samples that received another classification by one or more of
the four models were considered to be “osteosarcoma-NOT
detectable”. Event-free survival (time to disease progression) was
then compared between dogs whose post-treatment samples
were considered “osteosarcoma-detectable” and dogs whose
post-treatment samples were considered “osteosarcoma-NOT
detectable”. Figure 7A shows that, using the top four performing
models, dogs with post-treatment samples predicted as “osteo-
sarcoma-NOT detectable” had extended event-free survivals
(median disease-free interval of 371.1 days) compared to dogs
with post-treatment samples predicted as “osteosarcoma-detect-
able” (median disease-free interval of 149.0 days). The hazard ratio
of “NOT detectable” versus “detectable” at 15 months was 2.252,
p= 0.1675 (CI: 0.8557–5.927). Figure 7B shows that, using the top-
three most sensitive models, dogs with post-treatment samples
predicted as “osteosarcoma-NOT detectable” had extended event-
free survivals (median disease-free interval of 722 days) compared
to dogs with post-treatment samples predicted as “osteosarcoma-
detectable” (median disease-free interval of 215 days). The hazard
ratio at 15 months of “NOT detectable” versus “detectable” was
3.066, p= 0.0398 (CI: 1.054–8.922).

DISCUSSION
Non-invasive tests that inform prognosis and longitudinal remis-
sion status remain a persistent unmet need for patients with
osteosarcoma. In this study, we identified a gene signature
associated with prognosis in canine osteosarcoma using a novel
xenograft model and bioinformatics pipeline17. We hypothesize
that the five-gene exosomal biomarker signature was associated
with prognosis following treatment in dogs with osteosarcoma
due to the potential detection of microscopic metastatic disease.
The data demonstrate the robustness of our novel xenograft and
bioinformatics platform to identify biomarkers for biologically or
prognostically significant conditions.
Osteosarcoma, the most common primary tumor of bone,

exhibits heterogeneous biological behavior3–5; some tumors are
extremely aggressive and unlikely to respond to conventional
approaches, whereas others have more variable outcomes and
may not require as aggressive treatment protocols. However,
stratifying tumors based on aggressiveness is challenging in the
clinical setting without suitable biomarkers. Previously identified
transcriptional programs that predict tumor behavior and inform
prognosis for osteosarcoma patients include the gene cluster
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expression summary score, or GCESS3,39. The GCESS methodology
overcomes the challenge of tumor heterogeneity by identifying
coordinately regulated transcripts that provide a cleaner signal,
resulting in a biomarker set with greater sensitivity and specificity
than that afforded by single biomarkers. However, the GCESS
technique requires invasive tissue biopsies21, so it has not been
widely adopted in practice; additionally, its utility to monitor
minimal residual disease is unknown. Therefore, non-invasive tests

that inform prognosis and longitudinal remission status remain a
persistent unmet need for patients with osteosarcoma. The
development of a prognostic test could allow for patient
stratification and development of improved personalized
approaches in future clinical research, so that treatment plans
minimize risk and maximize benefit, ultimately aiding in the
development of new therapies optimized for relative risk.
Extracellular vesicles, specifically exosomes, have great potential

to be powerful diagnostic tools. In particular, they are stable in
biological fluids, can be efficiently isolated, and contain cargo that
is significantly associated with different disease states9–11. The
discovery of exosomes and their role in transferring genetic
information between cells has sparked interest in utilizing these
extracellular vesicles in the discovery of key genes promoting
tumor progression35,36,40–42. Indeed, osteosarcoma extracellular
vesicle-educated MSCs were shown to promote tumor growth and
metastasis in an orthotopic xenograft mouse model of osteosar-
coma37. Hoshino et al. utilized exosomal proteins to characterize a
variety of tumors, including osteosarcoma; however, the number
of included osteosarcoma extracellular vesicle samples was
relatively small (7 tumor tissue and 5 plasma extracellular vesicle
samples). Given the extensive heterogeneity exhibited by
osteosarcoma, thorough characterization using exosomal proteins
might be challenging43.
Despite the potential clinical utility of exosomes, identifying

cargo originating from diseased cells (the “signal”) from the
background of normal exosomes (the “noise”) is still a major
obstacle that precludes wide use of exosomes in clinical
laboratory medicine. Even in the case of cancer where tumor

Fig. 5 Machine learning model comparison based on repeated
stratified tenfold cross-validation analysis of the LDA-
transformed training set. Boxplot of machine learning performance
across different models tested shown as sensitivity and specificity
based on 100 repeated tenfold cross-validation. Red dashed boxes
indicate the top four models with the highest performance, and
blue dashed boxes indicate the top three most sensitive models.
Sensitivity: proportion of selecting true osteosarcoma; specificity:
proportion of selecting non-osteosarcoma (healthy, other neoplasia,
and non-neoplasia).

Fig. 4 Genes identified in xenografts were validated in canine serum-derived exosomes. Gene expression analysis of A SKA2, B NEU1, C
PAF1, D PSMG2, and E NOB1 gene transcripts by qRT-PCR. Relative expression data were mean-centered and scaled to the standard deviation
across all samples for each gene. F Table showing ANOVA values, demonstrating the relative contribution of each gene transcript to the
overall gene signature.
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cells release more exosomes than normal cells, the number of
exosomes produced by the tumor is dwarfed by the exosomes
produced by the patient’s normal cells, masking all but the
strongest tumor-derived exosome signals. Therefore, additional
steps, such as sorting by flow cytometry or immunomagnetic
enrichment with antibodies or tumor markers, are often under-
taken to enrich specifically for cancer-associated exosomes44,45.
The discovery platform described herein, utilizing canine

osteosarcoma as an example, allows virtually complete separation
of tumor-derived exosomal mRNA cargo and normal cell-derived
exosomal mRNA cargo using osteosarcoma xenograft models and
an innovative bioinformatics pipeline. Essentially, the mouse
model filters the “noise” from the system and helps define tumor
and host responses individually. The data from the xenograft
models suggest that osteosarcoma-derived exosomes modify the
metastatic niche, and host-derived exosomes create a window to
understand the host response to the presence of tumors. Utilizing
this platform, we developed a five-gene signature associated with
the “presence of canine osteosarcoma,” which was further
validated in the relevant target species (dogs). The role that these

mRNAs play in exosome biosynthesis or in intercellular commu-
nication is unclear. It is possible that when exosomes are taken up
by cells at distant sites, these mRNAs could be translated in the
target cells and contribute to molding the metastatic niche,
potentially by immune modulation46,47. On the other hand, they
might represent mRNAs that are eliminated from the tumor cells
via exosomes because they are toxic when present in high
abundance. Nevertheless, we determined that these five mRNAs
would provide the foundation for an “osteosarcoma-detectable”
signature that would be diagnostically useful. We decided to test
the hypothesis that the “osteosarcoma-detectable” signature
could be used in a machine learning environment to establish
the presence of microscopic, minimal residual disease in dogs with
osteosarcoma after surgery ± chemotherapy. Specifically, machine
learning was applied to post-treatment serum samples obtained
from dogs with osteosarcoma as a test set for detection of
minimal residual disease following treatment. The “osteosarcoma-
not detectable” group had extended event-free survivals com-
pared with the “osteosarcoma-detectable” group using either the
top-performing or the most sensitive models, suggesting that the

Fig. 7 Machine learning models predict presence minimal residual disease in canine osteosarcoma. Post-treatment samples (test set) from
dogs with osteosarcoma (n= 24) were classified as “osteosarcoma=detectable” or “osteosarcoma-not detectable” based on predictions from
A the four best-performing machine learning models (KNN, BAG, RF, and EXT), or B the three most sensitive machine learning models (LR,
LDA, RDG). Kaplan–Meier survival curves demonstrating time to relapse for subset of dogs with osteosarcoma with available survival data,
comparing those whose post-treatment samples were classified as “osteosarcoma-detectable” with those whose post-treatment samples were
classified as “osteosarcoma-not detectable”, A p= 0.1001; B p= 0.0398.

Fig. 6 Positive predictive value and negative predictive values. Positive predictive (PPV) and negative predictive (NPV) values (shown as %)
based on ten iterations of shuffled tenfold cross-validation for A the top four learning models (KNN, BAG, RF, and EXT) and B the three most
sensitive models (LR, LDA, and RDG). PPV and NPV are also shown for a combined prediction of the top four models shown in A based on the
Majority Rule voting (VOTE) and by all-or-none prediction, where Osteosarcoma is called only if agreed by all models (ALL), otherwise the
prediction is called as non-Osteosarcoma.
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test could detect the presence of osteosarcoma cells (i.e., minimal
residual disease) to prognosticate survival after initial treatment.
Additional variables with the potential to introduce bias (including
random assignment of samples to groups) were compared, and
none generated a signature that resulted in robust cross-
validation after training.
We hypothesize that dogs where the “osteosarcoma-detect-

able” signature was present after treatment had a shorter event-
free survival due to the presence of minimal residual disease.
Additional work is needed to validate the gene signature in an
independent set of canine osteosarcoma serum samples. How-
ever, the potential to detect minimal residual disease using this
signature suggests that it might have utility in the clinical setting
for determining prognosis after treatment. This biomarker could
be applied after surgery and/or the first round of conventional
chemotherapy to guide the subsequent treatment of dogs with
osteosarcoma and to alter the course of therapy as needed.
In conclusion, our data support the application of a novel

platform consisting of an osteosarcoma xenograft model and
bioinformatics pipeline for discovery of prognostically significant,
species-specific mRNAs. Moreover, our results document the utility
of machine learning algorithms to enhance applicability of these
mRNAs to address unmet medical needs, such as sensitive
detection of minimal residual disease. Specifically, for this study,
we identified and validated a five-gene signature associated with
the presence of osteosarcoma in dogs. We further determined
that this five-gene signature obtained from serum exosomes,
without the need for more invasive testing, was associated with
prognosis, presumably due to the detection of minimal residual
disease in dogs with osteosarcoma following treatment. This
exosomal five-gene signature could be applied to clinical
veterinary practice and a comparable signature uncovered using
our platform could be investigated in human osteosarcoma.
Species-appropriate signatures would allow for stratification of
dogs and humans with osteosarcoma to minimize risk and
maximize benefit of treatment, ultimately aiding in the develop-
ment of novel therapies.

DATA AVAILABILITY
Sequencing data has been deposited in GEO (accession #GSE183191) and all other
data are available from the corresponding author on reasonable request.
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