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Histopathologic evaluation of muscle biopsy samples is essential for classifying and diagnosing muscle diseases. However, the
numbers of experienced specialists and pathologists are limited. Although new technologies such as artificial intelligence are
expected to improve medical reach, their use with rare diseases, such as muscle diseases, is challenging because of the limited
availability of training datasets. To address this gap, we developed an algorithm based on deep convolutional neural networks
(CNNs) and collected 4041 microscopic images of 1400 hematoxylin-and-eosin-stained pathology slides stored in the National
Center of Neurology and Psychiatry for training CNNs. Our trained algorithm differentiated idiopathic inflammatory myopathies
(mostly treatable) from hereditary muscle diseases (mostly non-treatable) with an area under the curve (AUC) of 0.996 and achieved
better sensitivity and specificity than the diagnoses done by nine physicians under limited diseases and conditions. Furthermore, it
successfully and accurately classified four subtypes of the idiopathic inflammatory myopathies with an average AUC of 0.958 and
classified seven subtypes of hereditary muscle disease with an average AUC of 0.936. We also established a method to validate the
similarity between the predictions made by the algorithm and the seven physicians using visualization technology and clarified the
validity of the predictions. These results support the reliability of the algorithm and suggest that our algorithm has the potential to
be used straightforwardly in a clinical setting.
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INTRODUCTION
The diagnosis, management, and further study of rare diseases,
such as muscle diseases, carry fundamental challenges that are
different from those of common diseases, owing to fewer patients
and limited expert facilities and clinicians1. Novel digital tools,
such as artificial intelligence (AI), are expected to circumvent these
shortcomings by accelerating the processes of diagnosis, specialist
referrals, gathering and sharing of data, and clinical research on
rare diseases2. Deep learning is a highly reliable AI technology
used for specific tasks3; analyzing medical and pathological
images using deep learning4–9 is comparable to that by human
experts4–8. However, thus far, almost all deep learning-based
medical image analyses have only dealt with common diseases4–9

owing to the limited data available on rare diseases. Previous
studies using muscle magnetic resonance imaging and AI scored
conditions manually and did not diagnose them using the images
directly10,11.
In this study, we aimed to diagnose muscle diseases with

histopathology. Evaluating muscle pathology is unique because
muscle biopsy specimens require freeze-fixation and a different
set of histochemical staining techniques from general pathology.
Classifying muscle diseases according to their pathological
features remains diagnostically relevant even in today’s era of
molecular diagnoses12.

Previous studies required whole-slide pathological images13,14

and important infrastructural investments. However, real-world
pathological diagnoses are performed with analog microscopes.
Developing a diagnostic tool with a charge-coupled device (CCD)
camera that is much cheaper than a whole-slide scanner and can
recruit analog microscope images is the key to establishing a
practically applicable system, especially in underserved areas
worldwide.
To address this issue, we developed a deep learning, convolu-

tional neural network (CNN)-based algorithm that could differ-
entiate between major muscle diseases using a small amount of
training data. To train and evaluate the algorithm, we collected
microscopic images of hematoxylin and eosin (H&E)-stained
pathological slides that were obtained by CCD cameras. The
underlying algorithmic architecture for classifying dominant
muscular dystrophies with whole-slide images has been pre-
viously established15.

MATERIALS AND METHODS
Target muscle diseases
We chose 11 muscular diseases: 4 idiopathic inflammatory myopathies
(IIM) [dermatomyositis (DM), inclusion body myositis (IBM), immune-
mediated necrotizing myopathy (IMNM), and antisynthetase syndrome
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(ASS)] and 7 hereditary muscle diseases [dystrophinopathy (DYST), limb-
girdle muscular dystrophy 2A (LGMD2A), limb-girdle muscular dystrophy
2B (LGMD2B), Ullrich congenital muscular dystrophy (UCMD), Fukuyama-
type congenital muscular dystrophy (FCMD), congenital myopathy (CM),
and GNE myopathy (GNEM)], and neuropathy (Table 1). CM included
nemaline myopathy, central core disease, and centronuclear myopathy.

Approach
We employed a two-step approach to distinguish between the diseases: 1)
differentiating IIM from other conditions, and 2) subclassifying each
category because most IIM conditions are treatable but other hereditary
conditions are not (Fig. 1a). In the first step, we combined images of DM,
IBM, IMNM, and ASS to create the IIM group, and those of DYST, FCMD,
LGMD2A, LGMD2B, UCMD, CM, GNEM, and NP to create the counterpart
group. We used a holdout method16 to train and evaluate the CNNs and
compare them to human physicians. In the second step, we subclassified
four IIM subtypes and seven hereditary muscle diseases. We evaluated the
results using five-fold cross-validation16.
We also developed a visualization method using Grad-cam17 to check

the prediction accuracy of the CNNs. We used it to create AI-focused
images (Fig. 1c and f) that masked the areas that were not evaluated by
the CNNs and AI-unfocused images (Fig. 1d and g) that masked the areas
to be targeted by the CNNs. We then identified the image group that
physicians could use to obtain correct diagnoses and investigated the
relationship between the predictions made by the CNNs and the
physicians’ diagnoses.

Dataset
We utilized H&E-stained frozen muscle sections on glass slides that were
mounted for diagnostic purposes in the National Center of Neurology and
Psychiatry between 1981 and 2019. All materials used in the present study
were obtained for diagnostic purposes with written informed consent. The
Ethics Committee of the National Center of Neurology and Psychiatry
approved the study. The samples had already been evaluated by
immunostaining, western blot, blood biochemistry, and genetic testing.

Data preparation
Images were taken from slides with CCD cameras (DP72/DP74, Olympus,
Tokyo) attached to the microscope. The objective lens magnification was 4×,

and the image size was 1024 × 1360 or 1600 × 1200. Three pathological
images were taken per slide to maximize the coverage of the sample and
minimize overlaps between them. If the sample size was small enough to fit
into the finder field, only one image was taken.
By contrast, more than three shots were obtained if the sample size was

too large. In total, 4041 images were obtained from 1400 slides, with one
slide per patient. When the training and validation sets were created, two
image patches (1024 × 1024) were cropped from both the left and right
edges of the images for data augmentation. Meanwhile, an image patch
(1024 × 1024) was cropped from the image center when the test sets were
created.

CNN design
The CNN architecture developed for this study is illustrated in Fig. 1h. The
CNNs resized the input images from 1024 × 1024 to 640 × 640, divided an
imported image into sixteen 160 × 160 image patches, and generated a
feature map per patch. The 16 feature maps were concatenated and used
for the prediction of each image; we expected that the CNN could be
trained effectively even with a small number of images. All feature maps
were concatenated, averaged by global average-pooling, and used to
generate the final probability. At the same time, each feature map was
used to generate the probability per image patch. In the test phase, only
the final probability was used for the prediction. In the training phase, the
final probability and probabilities of image patches were used to calculate
the loss function (L) as:

L ¼ �
XM

i¼1

yi log pfinali þ
XT

j¼1

log pimage patch
j

 ! !

where M is the number of classes, T is the number of patches, y is a one-
hot vector (true class is 1 and others are 0), pfinal is a vector of the
probability of final prediction, and pimage patch is a vector of the probability
of prediction by image patch.
In this study, a densely connected convolutional network18, called

DenseNet, was used as a feature generator. DenseNet generally consisted
of dense blocks and transition layers, with each dense block having two
convolutional layers and a concatenation layer, and each transition layer
having a convolutional layer and an average-pooling layer. Our DenseNet
had 58 dense blocks and three transition layers, and it was pretrained with
ImageNet19, an extensive image database.

Training and testing the algorithm for the IIM differentiation
task
For this task, we adopted the holdout method that divides the data into
training and test sets. We randomly selected 96 slides as the test set and
used the remaining 1304 slides as the training set. In the training phase,
the training set was divided into five groups; four were used for training
and one to validate the progress of the training set. We conducted the
training five times while shifting the evaluation set one by one to train five
CNNs (Fig. 1i). In the test phase, we used a model ensemble method20 that
averaged the probabilities of images cropped from the same slide to
obtain the image probability by one slide and also averaged the output
probabilities of the five CNNs. The probability averaging function is:

pslide ¼
1
n

Xn

i¼1

pnimage

� �
;

where n is the number of images per slide, pslide is a vector of the
probability of a slide, and pimage is a vector of the probability of an image.
The class with the highest probability was adopted as the final prediction.
The following is the function of averaging the probabilities of models:

pnimage ¼
1
m

Xm

i¼1

pm;n
image

� �
;

where m is the number of models, and pm;n
image is a vector of the probability

of an image outputted by a model. Furthermore, pslide is:

pslide ¼
1
n
1
m

Xn

i¼1

Xm

i¼1

pm;n
image

� �
:

The disease with the highest probability was selected as the final
prediction.
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Setting the training algorithm
The number of trainings (the epoch size) was 60. Loss and accuracy were
calculated using the validation set in every training. The CNN with the best
accuracy was chosen for the test phase. We used rectified Adam21 as the
optimizer because it is more robust against the variance of learning rates
than the conventional Adam22 optimizer. The initial learning rate of the
optimizer was 0.0001. The CNNs were trained on Nvidia V100 using
TensorFlow 1.13.2 (https://github.com/tensorflow/tensorflow) and Keras
2.2.4 software (https://github.com/keras-team/keras).

Transfer learning
Transfer learning23 is a technique employed to improve the performance
of deep neural networks when the training data are limited. It uses the
parameters of CNNs that are trained in one task and applies them to
another task. In this study, the CNNs trained in IIM differentiation were
used to classify IIMs and non-myositis muscle diseases. First, the CNNs
were trained in IIM differentiation. Second, the final output layer of the
trained CNNs was changed from two units to four units because there were
two classes in the IIM differentiation task and four in the IIM classification
task. Finally, the CNNs were trained in IIM classification. Transfer learning
can be implemented in one of two ways: one is by having fixed parameters
and excluding the output layer, and the other is by having unfixed
parameters. We used the unfixed approach while classifying IIMs and non-
myositis muscle diseases and set the number of output units to seven.

Metrics
We evaluated the performance of the algorithm using the following
metrics: accuracy, receiver operating characteristic (ROC) curves (true-
versus false-positive rate), and AUC (area under the ROC). The accuracy was
calculated as follows:
Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ; where TP is true-positive,

TN is true-negative, FP is false-positive, and FN is false-negative. When we
used the five-fold cross-validation, we summed all the TP, TN, FP, and FN
values in five shots. ROC curves were generated by sweeping the threshold
from 0 to 1. In multi-class classifications, one target class was set as a
positive class and the other classes as negative.

Visualization
In previous studies, heatmaps were generated to visualize the prediction
by deep CNNs17,24,25. In this study, we adopted Grad-cam, which can
generate visual explanations from any CNN-based network without
requiring architectural changes or retraining. This method uses gradients
between confidences and feature maps to identify reactive filters. The
gradients are calculated as:

Gradient ¼ ∂yc

∂A
;

where yc is the confidence of class c, and A is a feature map. We used the
following function to calculate gradients because the aggregated classifier

Fig. 1 Strategy, masked sample images, and deep convolutional neural network architecture. a The strategy of IIM identification. b An IIM
(IMNM) image. c AI-focused image with masked areas not focused by CNNs in b. d AI-unfocused image with masked areas focused by CNNs in
b. e A non-myositis muscle disease (FCMD). f AI-focused image with masked areas not focused by CNNs in e. g AI-unfocused image with
masked areas focused by CNNs in e. h Deep CNN architecture; blue arrows indicate the flow for training and prediction, and red arrows
indicate the visualization flow. i Approach for training and evaluating CNNs as compared with those of the physicians. The images were
divided beforehand into training and test sets.
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internally generated feature maps per image patch.

Gradient ¼ yckPm
i¼1 y

c
i

∂yck
∂A

;

where m is the number of image patches, and yck is yc of image patch k.
The representation ability of Grad-cam depends on the size of the

feature map: the larger the feature map, the better the representation. The
size of the feature map in this study was 5 × 5, but the aggregated classifier
generated 16 (4 × 4) feature maps, which means that, practically, the size of
the feature maps was 20 × 20.

Participating physicians
Nine physicians (three adult neurologists, four pediatric neurologists, and
two pathologists) who were specially trained in muscle pathology
differentiated between IIM and other conditions by studying 96 pathology
slides. Their training period for muscle pathology was in the range of 1–23
years (average: 5.5 years). For the visualization test, seven physicians
(excluding two adult neurologists from the nine physicians) diagnosed
98 slides by studying AI-focused or AI-unfocused images.

RESULTS
Differentiation of IIM
The deep CNN was able to precisely differentiate IIM from other
muscle diseases with an AUC of 0.996 and outperform the nine
human specialists (Fig. 2a). Its accuracy was 96.9% if a probability
of 0.5 or higher was determined as myositis, whereas the

physicians’ highest accuracy was 93.8%. The average and
variability of the accuracies of the nine human specialists were
83.4% and 0.004, respectively. The number of misclassifications
was similar between IIM and other conditions (Fig. 2b). If a
probability of 0.3 or more was determined as IIM, the accuracy
decreased to 95.8%, but the number of incorrectly classified IIMs
became zero (Fig. 2c). We also confirmed that the model
ensemble was efficient in further improving the CNNs’ perfor-
mance (Fig. 2d). Detailed test conditions and test results are
presented in Table 2.

Classification of IIM and classification of hereditary muscle
diseases
The CNN successfully classified four subtypes of IIM with AUCs of
0.953 (IMNM), 0.969 (IBM), 0.965 (DM), and 0.944 (ASS) (average=
0.958) (Fig. 2e). We found that the accuracy was 83.9% when the
disease with the highest probability was the predicted class; ASS
tended to be incorrectly classified as IMNM, and IMNM tended to
be erroneously judged as IBM (Fig. 2f). It also classified seven
subtypes of hereditary muscle disease with AUCs of 0.942 (CM),
0.949 (LGMD2B), 0.930 (DYST), 0.869 (LGMD2A), 0.985 (FCMD),
0.959 (UCMD), and 0.915 (GNEM) (average= 0.936) (Fig. 2g). We
found that the accuracy was 74.5% when the disease with the
highest probability was the predicted class; LGMD2A tended to be
classified as LGMD2B; and GNEM tended to be misjudged as all
other classes (Fig. 2h). Detailed test conditions and test results are
presented in Table 2.

Fig. 2 Differentiation of IIM and classification of IIM and non-myositis muscle disease. a ROC curve of the CNN (blue line) and physicians’
(blue dots) performances. b The confusion matrix that separates the IIM from the other diseases is 0.5. The vertical is the actual state, and the
horizontal is the prediction. c The confusion matrix that separates the IIM from the other diseases is 0.3, and there were no misclassifications
of IIM. d ROC curves without ensemble methods. e ROC curves of IIM classification. f Confusion matrix of IIM classification. The vertical is the
actual state, and the horizontal is the prediction. g ROC curves showing the classification of non-myositis muscle disease. h Confusion matrix
of non-myositis muscle disease classification.
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Test with visualization
We created masked images to investigate the relationship
between the physicians’ predictions and diagnoses. First, we
generated heatmap images with Grad-cam from H&E-stained
images. Second, we calculated the median for each heatmap
image. Finally, we transformed some heatmap images into mask
images by masking areas below the median and applying them to
H&E-stained images to create AI-focused images (Fig. 1c and f)
and created the remaining mask images by using the same
method to obtain AI-unfocused images. The number of AI-focused
IIM images, AI-unfocused IIM images (Fig. 1d and g), AI-focused
non-myositis muscle disease images, and AI-unfocused non-
myositis muscle disease images was 25, 25, 24, and 24,
respectively.
Seven physicians differentiated the IIM images into four

subtypes (ASS, IBM, DM, and IMNM) and the non-myositis images
into seven subtypes (DYST, LGMD2A, LGMD2B, CM, FCMD, UCMD,
and GNEM). The pathologists were not informed about which
images were AI-focused during testing. Each pathologist’s
accuracy was calculated and averaged in each group to calculate
the significant difference between AI-focused and AI-unfocused
images using the paired t-test. The function of the test was:

t ¼
ffiffiffi
n

p � μd
s

;

where μdand s are the mean and standard deviation of differences
between all pairs, and n is the number of samples. We assumed
that the results of the pathologists followed a normal distribution.

Result of test with visualization
Red and yellow areas were the most important to visualize the
CNN predictions (Fig. 3b and d) because they were interspersed
within the specimen (Fig. 3a–d). The average accuracy of the
physicians’ diagnosis with AI-focused and AI-unfocused images in
myositis was 0.674 and 0.526, respectively (Fig. 3e). The accuracy

of DM decreased significantly (Fig. 3f and g). The average
accuracies of non-myositis diseases were 0.458 and 0.440,
respectively (Fig. 3h). Comparatively, the AI-focused and AI-
unfocused images of myositis conditions were significantly
different (p= 0.003) but those of non-myositis conditions were
not (p= 0.629) (Fig. 3f–g and i–j).

DISCUSSION
It is difficult to diagnose rare diseases such as muscle diseases
because very few experienced specialists are available; therefore,
there is an urgent need for accurate and cost-effective techno-
logical diagnostic systems that can be used in remote regions2.
Herein, we reported a novel AI-based, CNN-assisted system to
diagnose muscle diseases with pathology using an algorithm
trained with limited image data (H&E-stained, CCD-shot slides).
Our major finding is that the CNNs outperformed human
physicians under limited diseases and conditions, indicating their
potential for cost-effective clinical use, especially in
underserved areas.
Most IIMs are treatable, but hereditary muscle diseases are

untreatable; therefore, accurately differentiating between them is
very important but often challenging even for experts (e.g., IMNM
clinically and pathologically mimics muscular dystrophy, especially
in children26,27). Moreover, each IIM subtype requires specific
treatment, further highlighting the need for differentiation. In this
study, CNNs successfully differentiated IIMs from other muscle
diseases and classified them into its four subtypes (IBM, IMNM,
DM, and ASS), suggesting that the system was effective for IIMs.
We did not include polymyositis in this analysis because muscle
pathologists are increasingly skeptical about its histopathological
definitions—a recent conceptual change in IIMs27,28.
The CNNs also classified seven major hereditary muscle

diseases, demonstrating that the system is compatible with
conventional muscle pathology diagnoses. This also suggests that

Table 2. Number of data samples required for training and validation and the results of every test case.

Test case Test type CV no. Data (image) Per slide Per image

Train Val Test AUC Accuracy AUC Accuracy

IIM differentiation Ensemble N/A N/A N/A 288 0.996 0.969 0.992 0.958

5-CV - Shot1 1 8364 2152 288 0.988 0.948 0.987 0.941

5-CV - Shot2 2 8412 2104 288 0.993 0.958 0.984 0.934

5-CV - Shot3 3 8420 2096 288 0.992 0.958 0.986 0.941

5-CV - Shot4 4 8408 2108 288 0.995 0.948 0.990 0.958

5-CV - Shot5 5 8460 2056 288 0.995 0.958 0.987 0.938

5-CV - Average N/A N/A N/A 288 0.993 0.954 0.987 0.942

IIM classification 5-CV - Shot1 1 1520 500 252 0.960 0.812 0.954 0.802

5-CV - Shot2 2 1510 504 255 0.953 0.800 0.944 0.784

5-CV - Shot3 3 1510 510 252 0.941 0.857 0.940 0.829

5-CV - Shot4 4 1514 504 253 0.965 0.881 0.956 0.842

5-CV - Shot5 5 1518 506 250 0.983 0.843 0.970 0.848

5-CV - Average N/A N/A N/A N/A 0.958 0.839 0.970 0.821

Classification of non-myositis muscle disease 5-CV - Shot1 1 2956 944 510 0.896 0.695 0.890 0.688

5-CV - Shot2 2 2956 1020 472 0.948 0.781 0.942 0.750

5-CV - Shot3 3 2992 944 492 0.950 0.749 0.942 0.746

5-CV - Shot4 4 2908 984 514 0.961 0.823 0.952 0.811

5-CV - Shot5 5 2948 1028 472 0.920 0.676 0.913 0.669

5-CV - Average N/A N/A N/A N/A 0.936 0.745 0.928 0.733

The amount of training and validation data was increased by data augmentation. Performance per slide was better than performance per image in most of the
test cases.
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genetic differences can be computationally predicted based on
histological features.
To visualize the accuracy of CNN predictions, Coudray et al.

manually highlighted cropped image patches from a whole-slide
photo5. In this study, we used Grad-cam17 to automatically identify
the critical regions for CNN predictions and create images to help
investigate the relationship between the CNN predictions and
physicians’ diagnoses.

AI-focused IIM areas were useful for the physicians and CNNs;
however, there was no significant difference in the non-myositis
images. We speculated that the physicians were not as accurate as
CNNs for non-myositis diseases because (1) the CNNs may have
considered findings that were unknown to the physicians; (2) the
CNNs may have recognized microstructures, such as rimmed
vacuoles and nemaline bodies, that are important diagnostic
features of hereditary diseases and are usually recognized by

Fig. 3 Visualization of CNNs predictions. a Sample H&E-stained images of IIM. bMerged images of H&E-stained images and heatmap images
created with Grad-cam. Red color indicates CNN focus areas essential for prediction. c Sample H&E-stained images of non-myositis muscle
diseases. dMerged images of H&E-stained and heatmap images created with Grad-cam. e Physicians’ test results in myositis. The left (blue) bar
shows the average accuracy of the physicians’ diagnosis with AI-focused images, while the right (orange) bar shows the AI-unfocused images.
The error bar indicates the standard deviation. f Confusion matrix of results with AI-focused images in IIM. g Confusion matrix of results with
AI-unfocused images in IIM. h Physicians’ test results in non-myositis. The left (blue) bar shows the average accuracy of the pathologists’
diagnosis with AI-focused images, and the right (orange) bar shows the AI-unfocused images. The error bar indicates the standard deviation.
i Confusion matrix of results with AI-focused images in non-myositis. j Confusion matrix of results with AI-unfocused images in non-myositis.
NA indicates no answer.
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physicians only at high magnifications; and (3) physicians are
usually trained to observe muscular findings on stains other than
H&E. The pathological findings of IIM, such as perifascicular
atrophy in DM, are large enough to observe even in low-
magnification H&E images, but hereditary muscle diseases are
easier to identify with other stains such as the modified Gomori
trichrome stain (vacuoles and nemaline bodies) and nicotinamide
adenine dinucleotide dehydrogenase (NADH)‐tetrazolium reduc-
tase stain (central cores).
In this study, we collected data from one of the world’s largest

muscle biopsy collections. The performance of CNNs can be
influenced by differences in the image data collection, staining
protocols, and cameras at various centers. Therefore, it is
necessary to conduct further studies with a larger number of
pathological images from several laboratories. We expect that
CNNs will be used in prospective studies and will be embedded
directly into medical equipment, as has been done in augmented
reality microscopes29. We believe that this study provides
promising outcomes that support the use of an AI-assisted system
for diagnosing neuromuscular disorders.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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