Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition

Abstract

The mechanisms underlying atrial fibrillation (AF), a type of heart arrhythmia, have not been fully identified. Long noncoding RNAs (lncRNAs) have been implicated in the progression of AF. The current study aimed to ascertain the means by which X-inactive specific transcript (XIST), a lncRNA, contributes to the pathogenesis of AF in an animal model or in atrial myocytes. Extracellular vesicles (EVs) derived from mouse adipose tissue-derived mesenchymal stem cells (AMSCs) were isolated, transfected with XIST, and either injected into AF mouse models or incubated with atrial myocytes. The in vitro and in vivo effects of EV-derived XIST on myocardial pyroptosis were determined by Western blot analysis of pyroptosis-related protein and an ELISA for inflammatory factors. Bioinformatics analysis revealed a relationship between XIST, microRNA (miR)−214-3p, and Arl2, which was subsequently verified by a dual luciferase assay and RNA immunoprecipitation. Functional experiments were performed to elucidate whether changes in miR-214-3p or Arl2 regulated the effect of XIST on myocardial pyroptosis. Overexpressed XIST from AMSC-EVs were found to decrease myocardial pyroptosis while alleviating inflammation, which was demonstrated by reduced expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cleared-caspase-1/caspase-1 and gasdermin D (GSDMD), as well as the amount of interleukin (IL)-1β and IL-18 in both the cardiomyocytes and AF mouse tissues. Mechanistically, XIST is a competing endogenous RNA (ceRNA) of miR-214-3p, triggering upregulation of its target gene Arl2. Silencing of Arl2 or overexpression miR-214-3p reversed the effects of XIST on inflammation and pyroptosis. Taken together, the key findings of our study suggest that XIST may blunt myocardial pyroptosis by absorbing miR-214-3p to promote Arl2 expression, providing encouraging insight into XIST-based targeted therapy for AF.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of AMSCs and AMSC-derived EVs.
Fig. 2: EV-derived XIST blunted myocardial pyroptosis in AF.
Fig. 3: EV-derived XIST suppressed the activation of NLRP3 inflammasome and pyroptosis of HL-1 cells.
Fig. 4: XIST as a ceRNA of miR-214-3p upregulated Arl2.
Fig. 5: XIST blunted pyroptosis of HL-1 cell by downregulating miR-214-3p.
Fig. 6: XIST inhibited pyroptosis of HL-1 cells by upregulating Arl2.
Fig. 7: XIST attenuated myocardial pyroptosis by activating miR-214-3p-mediated Arl2 in AF.
Fig. 8: The mechanism of adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles delivering LncRNA XIST in myocardial pyroptosis in atrial fibrillation.

Data availability

The datasets generated analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Zimetbaum P. Atrial fibrillation. Ann Intern Med. 2017;166:ITC33–ITC48.

    PubMed  Article  Google Scholar 

  2. 2.

    Seccia TM, Caroccia B, Maiolino G, Cesari M, Rossi GP. Arterial hypertension, aldosterone, and atrial fibrillation. Curr Hypertens Rep. 2019;21:94.

    PubMed  Article  Google Scholar 

  3. 3.

    Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114:1453–68.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lau DH, Linz D, Sanders P. New findings in atrial fibrillation mechanisms. Card Electrophysiol Clin. 2019;11:563–71.

    PubMed  Article  Google Scholar 

  5. 5.

    Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Li Y, Zhao J, Yu S, Wang Z, He X, Su Y, et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem. 2019;65:798–808.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci. 2019;6:1901779.

    CAS  Article  Google Scholar 

  8. 8.

    Hafiane A, Daskalopoulou SS. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism. 2018;85:213–22.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Bang OY, Kim EH. Mesenchymal stem cell-derived extracellular vesicle therapy for stroke: challenges and progress. Front Neurol. 2019;10:211.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Thulin A, Lindback J, Granger CB, Wallentin L, Lind L, Siegbahn A. Extracellular vesicles in atrial fibrillation and stroke. Thromb Res. 2020;193:180–9.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kenneweg F, Bang C, Xiao K, Boulanger CM, Loyer X, Mazlan S, et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis. Mol Ther Nucleic Acids. 2019;18:363–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Weakley SM, Wang H, Yao Q, Chen C. Expression and function of a large non-coding RNA gene XIST in human cancer. World J Surg. 2011;35:1751–6.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging. 2019;11:7830–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP. The resolution of inflammation. Nat Rev Immunol. 2013;13:59–66.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Kanneganti TD. The inflammasome: firing up innate immunity. Immunol Rev. 2015;265:1–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.

    CAS  Article  Google Scholar 

  18. 18.

    Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27:673–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C, et al. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol. 2019;67:311–8.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Chen G, Chelu MG, Dobrev D, Li N. Cardiomyocyte inflammasome signaling in cardiomyopathies and atrial fibrillation: mechanisms and potential therapeutic implications. Front Physiol. 2018;9:1115.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 2010;122:2378–87.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Peng H, Luo Y, Ying Y. lncRNA XIST attenuates hypoxia-induced H9c2 cardiomyocyte injury by targeting the miR-122-5p/FOXP2 axis. Mol Cell Probes. 2020;50:101500.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Mao Q, Liang XL, Zhang CL, Pang YH, Lu YX. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther. 2019;10:393.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Zhang L, Liu H, Jia L, Lyu J, Sun Y, Yu H, et al. Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats. Oxid Med Cell Longev. 2019;2019:3753485.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wei R, Zhang L, Hu W, Wu J, Zhang W. Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp Neurol. 2019;314:100–10.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Cheng Y, Geng L, Wang K, Sun J, Xu W, Gong S, et al. Long noncoding RNA expression signatures of colon cancer based on the ceRNA network and their prognostic value. Dis Markers. 2019;2019:7636757.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301–12.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Witwer KW, Van Balkom BWM, Bruno S, Choo A, Dominici M, Gimona M, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 2019;8:1609206.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Nair SG. Atrial fibrillation after cardiac surgery. Ann Card Anaesth. 2010;13:196–205.

    PubMed  Article  Google Scholar 

  31. 31.

    Yao C, Veleva T, Scott L Jr., Cao S, Li L, Chen G, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138:2227–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Broz P. Immunology: caspase target drives pyroptosis. Nature. 2015;526:642–3.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99–109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol. 2014;6:a016287.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Harada M, Van Wagoner DR, Nattel S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ J. 2015;79:495–502.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, et al. Pyroptosis: a new frontier in cancer. Biomed Pharmacother. 2020;121:109595.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23:812–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Jansen F, Nickenig G, Werner N. Extracellular vesicles in cardiovascular disease: potential applications in diagnosis, prognosis, and epidemiology. Circ Res. 2017;120:1649–57.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy Via AMPK and Akt pathways. Cell Physiol Biochem. 2017;43:52–68.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Liu L, Zhang H, Mao H, Li X, Hu Y. Exosomal miR-320d derived from adipose tissue-derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation (AF). Artif Cells Nanomed Biotechnol. 2019;47:3976–84.

    PubMed  Article  Google Scholar 

  43. 43.

    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm. 2020;17:1043–9.

    PubMed  Article  Google Scholar 

  47. 47.

    Ma M, Pei Y, Wang X, Feng J, Zhang Y, Gao MQ. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-kappaB/NLRP3 inflammasome pathway. Cell Prolif. 2019;52:e12525.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Li W, Wang L, Wu Y, Yuan Z, Zhou J. Weighted gene coexpression network analysis to identify key modules and hub genes associated with atrial fibrillation. Int J Mol Med. 2020;45:401–16.

    CAS  PubMed  Google Scholar 

  49. 49.

    Feng Y, Wan P, Yin L. Long noncoding RNA X-inactive specific transcript (XIST) promotes osteogenic differentiation of periodontal ligament stem cells by sponging MicroRNA-214-3p. Med Sci Monit. 2020;26:e918932.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Luo X, Yang B, Nattel S. MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat Rev Cardiol. 2015;12:80–90.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Natsume Y, Oaku K, Takahashi K, Nakamura W, Oono A, Hamada S, et al. Combined analysis of human and experimental murine samples identified novel circulating microRNAs as biomarkers for atrial fibrillation. Circ J. 2018;82:965–73.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Yang F, Li A, Qin Y, Che H, Wang Y, Lv J, et al. A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA. Mol Ther Nucleic Acids. 2019;17:636–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018;9:1000.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Long LM, He BF, Huang GQ, Guo YH, Liu YS, Huo JR. microRNA-214 functions as a tumor suppressor in human colon cancer via the suppression of ADP-ribosylation factor-like protein 2. Oncol Lett. 2015;9:645–50.

    PubMed  Article  Google Scholar 

  55. 55.

    Kahn RA, Volpicelli-Daley L, Bowzard B, Shrivastava-Ranjan P, Li Y, Zhou C, et al. Arf family GTPases: roles in membrane traffic and microtubule dynamics. Biochem Soc Trans. 2005;33:1269–72.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Wang K, Li P, Dong Y, Cai X, Hou D, Guo J, et al. A microarray-based approach identifies ADP ribosylation factor-like protein 2 as a target of microRNA-16. J Biol Chem. 2011;286:9468–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge and appreciate our colleagues for their valuable efforts and comments on this paper.

Funding

This study was supported by Nantong Municipal Science and Technology Plan (guidance) Project in 2019 (JCZ19058).

Author information

Affiliations

Authors

Contributions

BY, TL, and CY participated in the conception and design of the study. XL performed the analysis and interpretation of data. QD and BY contributed to drafting the article. CY revised it critically for important intellectual content. LP is the GUARANTOR for the article who accepts full responsibility for the work and/or the conduct of the study, had access to the data, and oversaw the decision to publish.

Corresponding author

Correspondence to Lihua Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The current study was performed with the approval of the Ethics Committee of Affiliated Hospital of Nantong University and performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health. Extensive efforts were made to ensure minimal suffering as well as the number of animals used during the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Liu, T., Yao, C. et al. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. Lab Invest 101, 1427–1438 (2021). https://doi.org/10.1038/s41374-021-00635-0

Download citation

Search

Quick links