Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CircN4BP2L2 promotes colorectal cancer growth and metastasis through regulation of the miR-340-5p/CXCR4 axis


Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. Dysregulation of circular RNAs (circRNAs) appears to be a critical factor in CRC progression. However, mechanistic studies delineating the role of circRNAs in CRC remain limited. In this study, qRT-PCR and western blot assays were used to measure the expression of genes and proteins. Migration, invasion, proliferation, and apoptosis were examined by wound-healing, transwell, CCK-8, colony formation, and flow cytometry assays, respectively. Molecular interactions were validated by a dual-luciferase report system. A xenograft animal model was established to examine in vivo tumor growth and lung metastasis. Our data indicated that circN4BP2L2 expression was increased in CRC tissues and cell lines. Notably, inhibition of circN4BP2L2 effectively inhibited proliferation, migration, and invasion of LoVo cells, and inhibited tumor growth and metastasis in vivo, whereas the forced expression of circN4BP2L2 facilitated the proliferation, migration, and invasion of HT-29 cells. Mechanistic studies revealed that circN4BP2L2 acted as a molecular sponge of miR-340-5p to competitively promote CXCR4 expression. Furthermore, inhibition of miR-340-5p reversed the anti-cancer effects of circN4BP2L2 or CXCR4 silencing. Our data indicated an oncogenic role of circN4BP2L2 in CRC via regulation of the miR-340-5p/CXCR4 axis, which may be a promising biomarker and target for CRC treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Upregulation of circN4BP2L2 in CRC tissues and cell lines.
Fig. 2: Silencing of circN4BP2L2 impairs cell proliferation, migration and invasion, and induces apoptosis of CRC cells in vitro.
Fig. 3: Forced expression of circN4BP2L2 promotes cell proliferation, migration, and invasion, but inhibits apoptosis in CRC cells.
Fig. 4: Silencing of circN4BP2L suppressed tumor growth and CRC lung metastasis in vivo.
Fig. 5: circN4BP2L2 enhances CXCR4 expression by acting as a molecular sponge of miR-340-5p.
Fig. 6: Knockdown of circN4BP2L2 suppresses CRC cell growth and metastasis through regulating miR-340-5p/CXCR4 axis.
Fig. 7: circN4BP2L2 promotes CRC cell growth and metastasis by regulating the miR-340-5p/CXCR4 axis.
Fig. 8: Schematic diagram of research mechanism.

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Taylor DP, Burt RW, Williams MS, Haug PJ, Cannon-Albright LA. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology. 2010;138:877–85.

    Article  Google Scholar 

  2. 2.

    Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer. 2009;124:2406–15.

    CAS  Article  Google Scholar 

  3. 3.

    Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 2011;6:e20456.

    CAS  Article  Google Scholar 

  4. 4.

    Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22:1958–72.

    CAS  Article  Google Scholar 

  5. 5.

    Chen C, Huang Z, Mo X, Song Y, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res. 2020;39:91.

    CAS  Article  Google Scholar 

  6. 6.

    Wu HB, Huang SS, Lu CG, Tian SD, Chen M. CircAPLP2 regulates the proliferation and metastasis of colorectal cancer by targeting miR-101-3p to activate the Notch signalling pathway. Am J Transl Res. 2020;12:2554–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zhong S, Zhou S, Yang S, Yu X, Xu H, Wang J, et al. Identification of internal control genes for circular RNAs. Biotechnol Lett. 2019;41:1111–9.

    CAS  Article  Google Scholar 

  8. 8.

    Ning L, Long B, Zhang W, Yu M, Wang S, Cao D, et al. Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol. 2018;53:2637–46.

    CAS  PubMed  Google Scholar 

  9. 9.

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    CAS  Article  Google Scholar 

  10. 10.

    Kong F, Zou H, Liu X, He J, Zheng Y, Xiong L, et al. miR-7112-3p targets PERK to regulate the endoplasmic reticulum stress pathway and apoptosis induced by photodynamic therapy in colorectal cancer CX-1 cells. Photodiagnosis Photodyn Ther. 2020;29:101663.

    CAS  Article  Google Scholar 

  11. 11.

    Ou C, Sun Z, Li X, Ren W, Qin Z, Zhang X, et al. MiR-590-5p, a density-sensitive microRNA, inhibits tumorigenesis by targeting YAP1 in colorectal cancer. Cancer Lett. 2017;399:53–63.

    CAS  Article  Google Scholar 

  12. 12.

    Zhang Z, Li J, Huang Y, Peng W, Qian W, Gu J, et al. Upregulated miR-1258 regulates cell cycle and inhibits cell proliferation by directly targeting E2F8 in CRC. Cell Prolif. 2018;51:e12505.

    Article  Google Scholar 

  13. 13.

    Li SS, Zhu HJ, Li JY, Tian LM, Lv DM. MiRNA-875-3p alleviates the progression of colorectal cancer via negatively regulating PLK1 level. Eur Rev Med Pharmacol Sci. 2020;24:1126–33.

    PubMed  Google Scholar 

  14. 14.

    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

    Article  Google Scholar 

  15. 15.

    Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-beta1 axis. Mol Cancer. 2020;19:117.

    CAS  Article  Google Scholar 

  16. 16.

    Li LN, Jiang KT, Tan P, Wang AH, Kong QY, Wang CY, et al. Prognosis and clinicopathology of CXCR4 in colorectal cancer patients: a meta-analysis. Asian Pac J Cancer Prev. 2015;16:4077–80.

    Article  Google Scholar 

  17. 17.

    Ke B, Wang XN, Liu N, Li B, Wang XJ, Zhang RP, et al. Sonic Hedgehog/Gli1 signaling pathway regulates cell migration and invasion via induction of epithelial-to-mesenchymal transition in gastric cancer. J Cancer. 2020;11:3932–43.

    CAS  Article  Google Scholar 

  18. 18.

    Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065.

    Article  Google Scholar 

  19. 19.

    Bhuyan R, Bagchi A. Prediction of the differentially expressed circRNAs to decipher their roles in the onset of human colorectal cancers. Gene. 2020;762:145035.

    CAS  Article  Google Scholar 

  20. 20.

    Chen P, Yao Y, Yang N, Gong L, Kong Y, Wu A. Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression. Cell Death Dis. 2020;11:557.

    CAS  Article  Google Scholar 

  21. 21.

    Montserrat N, Mozos A, Llobet D, Dolcet X, Pons C, de Herreros AG, et al. Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Hum Pathol. 2012;43:632–43.

    Article  Google Scholar 

  22. 22.

    Christofori G. New signals from the invasive front. Nature. 2006;441:444–50.

    CAS  Article  Google Scholar 

  23. 23.

    Lin Z, Long F, Zhao M, Zhang X, Yang M. The role of circular RNAs in hematological malignancies. Genomics. 2020;112:4000–8.

    CAS  Article  Google Scholar 

  24. 24.

    Zhang T, Zhang L, Han D, Tursun K, Lu X. Circular RNA hsa_Circ_101141 as a competing endogenous RNA facilitates tumorigenesis of hepatocellular carcinoma by regulating miR-1297/ROCK1 pathway. Cell Transplant. 2020;29:963689720948016.

    PubMed  Google Scholar 

  25. 25.

    Yin L, Chen J, Ma C, Pei S, Du M, Zhang Y, et al. Hsa_circ_0046263 functions as a ceRNA to promote nasopharyngeal carcinoma progression by upregulating IGFBP3. Cell Death Dis. 2020;11:562.

    CAS  Article  Google Scholar 

  26. 26.

    Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, et al. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene. 2019;38:7399–415.

    CAS  Article  Google Scholar 

  27. 27.

    Kim S, Choi JY, Seok HJ, Park MJ, Chung HY, Bae IH. miR-340-5p suppresses aggressiveness in glioblastoma multiforme by targeting Bcl-w and Sox2. Mol Ther Nucleic Acids. 2019;17:245–55.

    CAS  Article  Google Scholar 

  28. 28.

    Lu G, Zhang Y. MicroRNA-340-5p suppresses non-small cell lung cancer cell growth and metastasis by targeting ZNF503. Cell Mol Biol Lett. 2019;24:34.

    Article  Google Scholar 

  29. 29.

    Cheng B, Rong A, Zhou Q, Li W. LncRNA LINC00662 promotes colon cancer tumor growth and metastasis by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway. J Exp Clin Cancer Res. 2020;39:5.

    CAS  Article  Google Scholar 

  30. 30.

    Yang L, Men WL, Yan KM, Ti J, Nie YZ, Xiao HJ. MiR-340-5p is a potential prognostic indicator of colorectal cancer and modulates ANXA3. Eur Rev Med Pharmacol Sci. 2018;22:4837–45.

    CAS  PubMed  Google Scholar 

  31. 31.

    Yin X, Li Z, Zhu P, Wang Y, Ren Q, Chen H, et al. CXCL12/CXCR4 promotes proliferation, migration, and invasion of adamantinomatous craniopharyngiomas via PI3K/AKT signal pathway. J Cell Biochem. 2019;120:9724–36.

    CAS  Article  Google Scholar 

  32. 32.

    Zhu Y, Tang L, Zhao S, Sun B, Cheng L, Tang Y, et al. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is suppressed by MicroRNA-613. Cancer Sci. 2018;109:2412–22.

    CAS  Article  Google Scholar 

  33. 33.

    Liu Y, Zho Y, Feng X, An P, Quan X, Wang H, et al. MicroRNA-126 functions as a tumor suppressor in colorectal cancer cells by targeting CXCR4 via the AKT and ERK1/2 signaling pathways. Int J Oncol. 2014;44:203–10.

    CAS  Article  Google Scholar 

  34. 34.

    Fang Y, Sun B, Wang J, Wang Y. miR-622 inhibits angiogenesis by suppressing the CXCR4-VEGFA axis in colorectal cancer. Gene. 2019;699:37–42.

    CAS  Article  Google Scholar 

Download references

Author information




KY and YW performed the experiments and wrote the manuscript. FZ collected and analyzed the data. ZZ designed and supervised the study. BL contributed the methodology. DF and ZZ analyzed the data and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhi-Jun Zeng.

Ethics declarations

Ethics statement/consent to participate

The study has been approved by the Hospital’s Ethics Committee. All patients were informed of the study and signed the written consent.

Funding statement

This work was supported by the Natural Science Foundation of Hunan Province (No. 2019JJ40480).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, KD., Wang, Y., Zhang, F. et al. CircN4BP2L2 promotes colorectal cancer growth and metastasis through regulation of the miR-340-5p/CXCR4 axis. Lab Invest (2021).

Download citation


Quick links