Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway


Cellular senescence is a key mechanism of age-related vascular endothelial dysfunction. Interleukin-17A (IL-17A) is an inflammatory cytokine produced by Th17 cells (a subgroup of helper T cells), which is a key factor in the development of atherosclerosis. However, the effect of IL-17A on the senescence of vascular endothelial cells is still unclear. In this study, we aimed to explore the role of IL-17A on endothelial cell senescence and its signaling pathways associated with senescence. The proportion of Th17 cells in the spleen and the expression levels of IL-17A, IL-6, and vascular cell adhesion molecule-1 (VCAM-1) in mice of different ages were increased with aging. In vitro experiments showed that proliferation was inhibited, senescent β-galactosidase and senescence-associated proteins (p16, p19, p21, and p53) of mouse aortic endothelial cells (MAECs) were increased with IL-17A treatment. Blocking the NF-κB pathway with ammonium pyrrolidinedithiocarbamate (PDTC) successfully inhibited IL-17A-induced expression of senescence-associated proteins. In conclusion, our data reveal a previously unsuspected link between IL-17A and endothelial cell senescence, which was mediated by the NF-κB /p53/Rb pathway.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The morphology of mouse arteries and the expression of Th17 cells and IL-17A, IL-6, VCAM-1 of different age mice.
Fig. 2: Immunological identification, senescence staining and SAHF observation of the primary endothelial cells from each group.
Fig. 3: Effects of different concentrations of IL-17A on senescence of mouse aortic endothelial cells.
Fig. 4: Flow cytometry and immunohistochemistry were used to detect the expression levels of the IL-17A/IL-17 receptor A (IL-17RA) and to assess the endothelial cell cycle.
Fig. 5: The expression levels of NF-κB, its phosphorylated proteins and those of the p53/Rb senescence pathway proteins were detected by western blot analysis.

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Lephart ED. Skin aging and oxidative stress: equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev. 2016;31:36–54.

    CAS  Article  Google Scholar 

  2. 2.

    Everaerts S, Lammertyn EJ, Martens DS, De Sadeleer LJ, Maes K, van Batenburg AA, et al. The aging lung: tissue telomere shortening in health and disease. Respir Res. 2018;19:95.

    Article  Google Scholar 

  3. 3.

    Singh PP, Demmitt BA, Nath RD, Brunet A. The genetics of aging: a vertebrate perspective. Cell. 2019;177:200–20.

    CAS  Article  Google Scholar 

  4. 4.

    Chung HY, Lee EK, Choi YJ, Kim JM, Kim DH, Zou Y, et al. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res. 2011;90:830–40.

    CAS  Article  Google Scholar 

  5. 5.

    Huang Y, Hu C, Ye H. Inflamm-aging: a new mechanism affecting premature ovarian insufficiency. J Immunol Res. 2019; 2019:8069898.

  6. 6.

    Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32:5129–43.

    CAS  Article  Google Scholar 

  7. 7.

    Singh SK, Banerjee S, Acosta EP, Lillard JW, Singh R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget. 2017;8:17216–28.

    Article  Google Scholar 

  8. 8.

    Abbas M, Jesel L, Auger C, Amoura L, Messas N, Manin G, et al. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation. 2017;135:280–96.

    CAS  Article  Google Scholar 

  9. 9.

    Sato K, Nuki T, Gomita K, Weyand CM, Hagiwara N. Statins reduce endothelial cell apoptosis via inhibition of TRAIL expression on activated CD4 T cells in acute coronary syndrome. Atherosclerosis. 2010;213:33–39.

    CAS  Article  Google Scholar 

  10. 10.

    Sima AV, Stancu CS, Simionescu M. Vascular endothelium in atherosclerosis. Cell Tissue Res. 2009;335:191–203.

    CAS  Article  Google Scholar 

  11. 11.

    Giusti D, Bini E, Terryn C, Didier K, Le Jan S, Gatouillat G, et al. NET formation in bullous pemphigoid patients with relapse is modulated by IL-17 and IL-23 interplay. Front Immunol. 2019;10:701.

    CAS  Article  Google Scholar 

  12. 12.

    Zhu S, Pan W, Shi P, Gao H, Zhao F, Song X, et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med. 2010;207:2647–62.

    CAS  Article  Google Scholar 

  13. 13.

    Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature. 2008;453:1051–7.

    CAS  Article  Google Scholar 

  14. 14.

    Liu Z, Lu F, Pan H, Zhao Y, Wang S, Sun S, et al. Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis. 2012;221:232–41.

    CAS  Article  Google Scholar 

  15. 15.

    Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10:319–29.

    CAS  Article  Google Scholar 

  16. 16.

    Weyand CM, Fulbright JW, Goronzy JJ. Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol. 2003;38:833–41.

    CAS  Article  Google Scholar 

  17. 17.

    Boots AM, Maier AB, Stinissen P, Masson P, Lories RJ, De Keyser F. The influence of ageing on the development and management of rheumatoid arthritis. Nat Rev Rheumatol. 2013;9:604–13.

    CAS  Article  Google Scholar 

  18. 18.

    Ginaldi L, De Martinis M, Modesti M, Loreto F, Corsi MP, Quaglino D. Immunophenotypical changes of T lymphocytes in the elderly. Gerontology. 2000;46:242–8.

    CAS  Article  Google Scholar 

  19. 19.

    Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29:848–62.

    CAS  Article  Google Scholar 

  20. 20.

    Nikolich-Zugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol. 2008;8:512–22.

    CAS  Article  Google Scholar 

  21. 21.

    Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6:154.

    Article  Google Scholar 

  22. 22.

    Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S, Tolaini M, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity. 2019;51:77–89.

    CAS  Article  Google Scholar 

  23. 23.

    Verstappen GM, Corneth OBJ, Bootsma H, Kroese FGM. Th17 cells in primary Sjogren’s syndrome: pathogenicity and plasticity. J Autoimmun. 2018;87:16–25.

    CAS  Article  Google Scholar 

  24. 24.

    Zhang L, Wang T, Wang XQ, Du RZ, Zhang KN, Liu XG, et al. Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome. PLoS ONE. 2013;8:e71466.

    Article  Google Scholar 

  25. 25.

    Ye D, Wang Z, Ye J, Wang M, Liu J, Xu Y et al. Interleukin-5 levels are decreased in the plasma of coronary artery disease patients and inhibit Th1 and Th17 differentiation in vitro. Rev Esp Cardiol. 2019;73:393–402.

  26. 26.

    Luo Y, Zhou Y, Xiao W, Liang Z, Dai J, Weng X, et al. Interleukin-33 ameliorates ischemic brain injury in experimental stroke through promoting Th2 response and suppressing Th17 response. Brain Res. 2015;1597:86–94.

    CAS  Article  Google Scholar 

  27. 27.

    Li Q, Ding S, Wang YM, Xu X, Shen Z, Fu R, et al. Age-associated alteration in Th17 cell response is related to endothelial cell senescence and atherosclerotic cerebral infarction. Am J Transl Res. 2017;9:5160–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediat Inflamm. 2017;2017:3908061.

  29. 29.

    Shiotsugu S, Okinaga T, Habu M, Yoshiga D, Yoshioka I, Nishihara T, et al. The biological effects of interleukin-17A on adhesion molecules expression and foam cell formation in atherosclerotic lesions. J Interferon Cytokine Res. 2019;39:694–702.

    CAS  Article  Google Scholar 

  30. 30.

    Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Ley K, et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2010;121:1746–55.

    CAS  Article  Google Scholar 

  31. 31.

    Mosteiro L, Pantoja C, de Martino A, Serrano M. Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6. Aging Cell. 2018;17:e12711.

  32. 32.

    Jeon BJ, Yang HM, Lyu YS, Pae HO, Ju SM, Jeon BH. Apigenin inhibits indoxyl sulfate-induced endoplasmic reticulum stress and anti-proliferative pathways, CHOP and IL-6/p21, in human renal proximal tubular cells. Eur Rev Med Pharmacol Sci. 2015;19:2303–10.

    PubMed  Google Scholar 

  33. 33.

    Kong DH, Kim YK, Kim MR, Jang JH, Lee S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int J Mol Sci. 2018;19:1057

  34. 34.

    Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57.

    CAS  Article  Google Scholar 

  35. 35.

    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    CAS  Article  Google Scholar 

  36. 36.

    Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9:556–67.

    CAS  Article  Google Scholar 

  37. 37.

    Byun HO, Jung HJ, Seo YH, Lee YK, Hwang SC, Hwang ES, et al. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp Cell Res. 2012;318:1808–19.

    CAS  Article  Google Scholar 

  38. 38.

    Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 2014;3:e02872.

  39. 39.

    Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91:649–59.

    CAS  Article  Google Scholar 

  40. 40.

    Choi SE, Park YS, Koh HC. NF-kappaB/p53-activated inflammatory response involves in diquat-induced mitochondrial dysfunction and apoptosis. Environ Toxicol. 2018;33:1005–18.

Download references


This study was supported by the International Cooperative Project of Anhui Province of China (No. 201904b11020045), Province science and technology in the Anhui offends pass item (No.201904a07020086), and the Fundamental Research Funds for the Central Universities (Nos. WK9110000149, WK9110000084, WK9110000012).

Author information




L.Z., W.H., and Y.P.W. designed and supervised the study; L.Z., M.L.L., C.J.H., and W.H.L. performed animal experiments and in vitro experiments, and analyzed data; Q.L., W.H.L., and H.Q.L. assisted in flow cytometry and provided reagents and expertise; Q.L., Y.P.W., Q.C., J.D., and W.H. participated in discussions, provided intellectual input; L.Z. and M.L.L and wrote the paper. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Wei Hu or Qing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, M., Liu, W. et al. Th17/IL-17 induces endothelial cell senescence via activation of NF-κB/p53/Rb signaling pathway. Lab Invest 101, 1418–1426 (2021).

Download citation


Quick links