Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LncRNA SNHG15 relieves hyperglycemia-induced endothelial dysfunction via increased ubiquitination of thioredoxin-interacting protein


Numerous studies have revealed that hyperglycemia is a pivotal driver of diabetic vascular complications. However, the mechanisms of hyperglycemia-induced endothelial dysfunction in diabetes remain incompletely understood. This study aims to expound on the underlying mechanism of the endothelial dysfunction induced by hyperglycemia from the perspective of long non-coding RNAs (lncRNA). In this study, a downregulation of SNHG15 was observed in the ischemic hind limb of diabetic mice and high glucose (HG)-treated HUVECs. Functionally, the overexpression of SNHG15 promoted cell proliferation, migration, and tube formation, and suppressed cell apoptosis in HG-treated HUVECs. Mechanistically, SNHG15 reduced thioredoxin-interacting protein (TXNIP) expression by enhancing ITCH-mediated ubiquitination of TXNIP. TXNIP overexpression abrogated the protective effect of lncRNA SNHG15 overexpression on HG-induced endothelial dysfunction. The following experiment further confirmed that SNHG15 overexpression promoted angiogenesis of the ischemic hind limb in diabetic mice. In conclusion, SNHG15 is a novel protector for hyperglycemia-induced endothelial dysfunction via decreasing TXNIP expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The expression level of LncRNA SNHG15 in high glucose-treated HUVECs and ischemic hind limbs of diabetic mice.
Fig. 2: The effect of lncRNA SNHG15 overexpression on proliferation, migration, tube formation, and apoptosis of HG-treated HUVECs.
Fig. 3: SNHG15 interacted with thioredoxin-interacting protein (TXNIP) in HUVECs.
Fig. 4: SNHG15 downregulated TXNIP expression by promoting its ubiquitination.
Fig. 5: TXNIP mediated the regulatory effect of SNHG15 on proliferation, migration, tube formation, and apoptosis in HG-treated HUVECs.
Fig. 6: The effect of SNHG15 overexpression on angiogenesis in ischemic hind limbs of diabetic mice.

Data availability

The datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.


  1. 1.

    Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    CAS  Article  Google Scholar 

  2. 2.

    Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. Jama. 1979;241:2035–8.

    CAS  Article  Google Scholar 

  3. 3.

    Meza, CA, La Favor, JD, Kim, DH & Hickner, RC Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci. 2019;20:3775.

  4. 4.

    Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1:1–1.

    Article  Google Scholar 

  5. 5.

    Roberts AC, Porter KE. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res. 2013;10:472–82.

    Article  Google Scholar 

  6. 6.

    Liang S, Ren K, Li B, Li F, Liang Z, Hu J, et al. LncRNA SNHG1 alleviates hypoxia-reoxygenation-induced vascular endothelial cell injury as a competing endogenous RNA through the HIF-1α/VEGF signal pathway. Mol Cell Biochem. 2020;465:1–11.

    CAS  Article  Google Scholar 

  7. 7.

    Shan H, Guo D, Zhang S, Qi H, Liu S, Du Y, et al. SNHG6 modulates oxidized low-density lipoprotein-induced endothelial cells injury through miR-135a-5p/ROCK in atherosclerosis. Cell Biosci. 2020;10:4–4.

    CAS  Article  Google Scholar 

  8. 8.

    Zhao M, Wang J, Xi X, Tan N, Zhang L. SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/VEGF pathway. Neuroscience. 2018;390:231–40.

    CAS  Article  Google Scholar 

  9. 9.

    Ma Y, Xue Y, Liu X, Qu C, Cai H, Wang P, et al. SNHG15 affects the growth of glioma microvascular endothelial cells by negatively regulating miR-153. Oncol Rep. 2017;38:3265–77.

    CAS  Article  Google Scholar 

  10. 10.

    Zhao W, Fu H, Zhang S, Sun S, Liu Y. LncRNA SNHG16 drives proliferation, migration, and invasion of hemangioma endothelial cell through modulation of miR-520d-3p/STAT3 axis. Cancer Med. 2018;7:3311–20.

    CAS  Article  Google Scholar 

  11. 11.

    Biscetti F, Straface G, De Cristofaro R, Lancellotti S, Rizzo P, Arena V, et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes. 2010;59:1496–505.

    CAS  Article  Google Scholar 

  12. 12.

    Shi Y, Huang C, Zhao Y, Cao Q, Yi H, Chen X, et al. RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy. Sci Rep. 2020;10:10458–10458.

    CAS  Article  Google Scholar 

  13. 13.

    Himeno T, Kamiya H, Naruse K, Cheng Z, Ito S, Shibata T, et al. Angioblast derived from ES cells construct blood vessels and ameliorate diabetic polyneuropathy in mice. J Diabetes Res. 2015;2015:257230–257230.

    Article  Google Scholar 

  14. 14.

    Imoukhuede PI, Dokun AO, Annex BH, Popel AS. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol. 2013;304:H1085–1093.

    CAS  Article  Google Scholar 

  15. 15.

    Xu X, Wei T, Zhong W, Zhu Z, Liu F, Li Q. IL-17 regulates the expression of major histocompatibility complex II and VEGF in DLBCL mice on tumor growth. Aging Pathobiol Therap. 2020;2:96–100.

    Article  Google Scholar 

  16. 16.

    Niu Y, Zhou B, Wan C, wu R, Sun H, Lu D. Down-regulation of miR-181a promotes microglial M1 polarization through increasing expression of NDRG2. Aging Pathobiol Therap. 2020;2:52–57.

    Article  Google Scholar 

  17. 17.

    Dunn LL, Simpson PJL, Prosser HC, Lecce L, Yuen GSC, Buckle A, et al. A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes. 2014;63:675–87.

    CAS  Article  Google Scholar 

  18. 18.

    Otaki, Y, Takahashi, H, Watanabe, T, Funayama, A, Netsu, S, Honda, Y et al. HECT-type ubiquitin E3 ligase ITCH interacts with thioredoxin-interacting protein and ameliorates reactive oxygen species-induced cardiotoxicity. J Am Heart Assoc. 2016;5:e002485.

  19. 19.

    Shuai Y, Ma Z, Lu J, Feng J. LncRNA SNHG15: A new budding star in human cancers. Cell Prolif. 2020;53:e12716–e12716.

    Article  Google Scholar 

  20. 20.

    Dai W, Dai JL, Tang MH, Ye MS, Fang S. lncRNA-SNHG15 accelerates the development of hepatocellular carcinoma by targeting miR-490-3p/ histone deacetylase 2 axis. World J Gastroenterol. 2019;25:5789–99.

    CAS  Article  Google Scholar 

  21. 21.

    Jin B, Jin H, Wu HB, Xu JJ, Li B. Long non-coding RNA SNHG15 promotes CDK14 expression via miR-486 to accelerate non-small cell lung cancer cells progression and metastasis. J Cell Physiol. 2018;233:7164–72.

    CAS  Article  Google Scholar 

  22. 22.

    Liu K, Hou Y, Liu Y, Zheng J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J Biomed Sci. 2017;24:46.

    Article  Google Scholar 

  23. 23.

    Yuan J, Tan JTM, Rajamani K, Solly EL, King EJ, Lecce L, et al. Fenofibrate rescues diabetes-related impairment of ischemia-mediated angiogenesis by PPARα-independent modulation of thioredoxin-interacting protein. Diabetes. 2019;68:1040–53.

    CAS  Article  Google Scholar 

  24. 24.

    Dunn LL, Simpson PJ, Prosser HC, Lecce L, Yuen GS, Buckle A, et al. A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes. 2014;63:675–87.

    CAS  Article  Google Scholar 

  25. 25.

    Patella F, Leucci E, Evangelista M, Parker B, Wen J, Mercatanti A, et al. MiR-492 impairs the angiogenic potential of endothelial cells. J Cell Mol Med. 2013;17:1006–15.

    CAS  Article  Google Scholar 

  26. 26.

    Kapusta A, Feschotte C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet. 2014;30:439–52.

    CAS  Article  Google Scholar 

  27. 27.

    Jiang Y, Wu W, Jiao G, Chen Y, Liu H. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci. 2019;228:208–14.

    CAS  Article  Google Scholar 

  28. 28.

    Liu Y, Lau J, Li W, Tempel W, Li L, Dong A, et al. Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP. Biochem J. 2016;473:179–87.

    CAS  Article  Google Scholar 

  29. 29.

    Zhang P, Wang C, Gao K, Wang D, Mao J, An J, et al. The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation. J Biol Chem. 2010;285:8869–79.

    CAS  Article  Google Scholar 

  30. 30.

    Tseng PC, Kuo CF, Cheng MH, Wan SW, Lin CF, Chang CP, et al. HECT E3 ubiquitin ligase-regulated Txnip degradation facilitates TLR2-mediated inflammation during group A Streptococcal infection. Front Immunol. 2019;10:2147.

    CAS  Article  Google Scholar 

  31. 31.

    Huy H, Song HY, Kim MJ, Kim WS, Kim DO, Byun J-E, et al. TXNIP regulates AKT-mediated cellular senescence by direct interaction under glucose-mediated metabolic stress. Aging Cell. 2018;17:e12836–e12836.

    Article  Google Scholar 

  32. 32.

    Zhao Y, Li X, Tang S. Retrospective analysis of the relationship between elevated plasma levels of TXNIP and carotid intima-media thickness in subjects with impaired glucose tolerance and early Type 2 diabetes mellitus. Diabetes Res Clin Pract. 2015;109:372–7.

    CAS  Article  Google Scholar 

  33. 33.

    Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008;22:3581–94.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Major Science and Technology Project in Medical and Health of Zhejiang Province (co-constructed Project by Province and the Ministry, 2020380400, WKJ-ZJ-2003) and the Key Program of Natural Science Foundation of Zhejiang Province (LZ21H020001).

Author information




Dong-lin Li and Hong-kun Zhang performed development of methodology and writing, review and revision of the paper; Tian-chi Chen, Xun Wang, and Lu Tian performed investigation; Zi-heng Wu, Xiao-hui Wang, Yun-yun He, and Yang-yan He provided visualization and supervision; Tao Shang and Yi-lang Xiang performed writing-reviewing and editing; Qian-qian Zhu and Ming-chun Lai contributed to the conception of the study, performed the experiments and wrote the paper.

Corresponding authors

Correspondence to Dong-lin Li or Hong-kun Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All animal experiments were approved by the Ethics Committee of the The First Affiliated Hospital, School of Medicine, Zhejiang University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Qq., Lai, Mc., Chen, Tc. et al. LncRNA SNHG15 relieves hyperglycemia-induced endothelial dysfunction via increased ubiquitination of thioredoxin-interacting protein. Lab Invest (2021).

Download citation


Quick links