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Abstract
Macrophages play an essential role in alcohol-induced inflammation and oxidative stress. We investigated the effects of
nicotinamide riboside (NR), a natural nicotinamide adenine dinucleotide (NAD+) precursor, on alcohol-induced
inflammation and oxidative stress in macrophages. NR significantly decreased ethanol-induced inflammatory gene
expression, with a concomitant decrease in nuclear translocation of nuclear factor κB p65 in RAW 264.7 macrophages and
mouse bone marrow-derived macrophages (BMDMs). In macrophages incubated with ethanol or acetaldehyde, NR
abolished the accumulation of cellular reactive oxygen species. Ethanol decreased sirtuin 1 (SIRT1) expression and activity,
and cellular NAD+ level while inducing pro-inflammatory gene expression. However, NR markedly attenuated the changes.
SIRT1 inhibition augmented ethanol-induced inflammatory gene expression, but its activation elicited opposing effects.
Also, ethanol did not alter glycolysis but increased glycolytic capacity, glycolytic reserve, and non-glycolytic acidification,
with concomitant increases in hypoxia-induced factor 1α expression and activity, phosphorylation of pyruvate
dehydrogenase, and extracellular lactate levels. Interestingly, ethanol increased mitochondrial respiration and ATP
production but decreased maximal respiration and spare respiration capacity. The latter was linked to decreases in
mitochondrial copy numbers. NR abolished the ethanol-induced metabolic changes in the glycolytic and oxidative
phosphorylation pathways in RAW 264.7 macrophages. In conclusion, NR exerts anti-inflammatory and antioxidant
properties by abrogating the inhibitory effects of ethanol on the SIRT1 pathway by increasing Sirt1 expression and its
activator, NAD+. Also, SIRT1 activation and normalization of ethanol-induced changes in NAD+/NADH ratios by NR are
likely crucial to counteract the changes in energy phenotypes of macrophages exposed to ethanol.

Introduction

Chronic alcohol consumption triggers inflammation and
oxidative stress, leading to alcohol-associated diseases, such
as alcoholic liver disease [1–3]. Alcohol-induced diseases
were responsible for ~6% of all global deaths in 2016,
according to a report by the World Health Organization [4].
Macrophages are crucial players for the pathogenesis of
alcoholic diseases as they produce pro-inflammatory cyto-
kines and reactive oxygen species (ROS) when exposed to
alcohol [2, 3].

Nicotinamide adenine dinucleotide (NAD) is an essential
coenzyme for multiple NAD-consuming enzymes involved
in mitochondrial oxidative phosphorylation and energy
metabolism [5]. During ethanol oxidation to acetate, NAD+

is consumed, consequently decreasing the ratios of NAD+/
nicotinamide adenine dinucleotide (NADH) [6, 7]. NAD
also acts as a cofactor of sirtuin 1 (SIRT1), a class III his-
tone deacetylase, whose activity is controlled by cellular
NAD+/NADH ratio [8, 9]. SIRT1 is known to regulate
inflammation and oxidative stress in alcohol-stimulated
hepatocytes and macrophages [10–12]. As decreased cel-
lular NAD+ level may contribute to alcohol-related dys-
functions in cells and tissues [13], the supply of NAD+ may
be necessary to counteract alcohol-induced inflammation
and oxidative stress.

Nicotinamide riboside (NR), an NAD+ precursor, makes
up ~40% of pro-vitamin B3 in cow milk [14, 15]. NR
becomes bioavailable NAD+ after the reactions by
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nicotinamide riboside kinase (NRK) and nicotinamide
mononucleotide adenylyltransferases (NMNAT) or nicoti-
namide (NAM) salvage pathway [16]. Mounting evidence
shows that NR increases NAD+ level in metabolically
active tissues, e.g., skeletal muscle, liver, and brown adi-
pose tissue, consequently enhancing mitochondrial bio-
genesis and oxidative metabolism to protect against
metabolic diseases [17, 18]. Also, NR prevents and reverses
nonalcoholic fatty liver disease via a SIRT1-dependent
mitochondrial unfolded protein response, inducing β-
oxidation and mitochondrial complex content and activity
[19]. Previously, we showed that NR attenuated the devel-
opment of liver fibrosis in a diet-induced obesity mouse
model, which was attributed, at least in part, to its inhibition
of hepatic stellate cell activation [20]. Also, NR elevated
hepatic NAD+ levels, preventing alcohol-induced liver
damage by activating SIRT1 in mice [10].

Macrophages play an essential role in alcohol-induced
cell damages [21, 22]. However, little is known about the
effects of NR on alcohol-induced inflammation and oxida-
tive stress in macrophages. In the present study, we
explored whether NR can inhibit inflammation and oxida-
tive stress in macrophages exposed to ethanol with a pri-
mary focus on the role of SIRT1 therein. Also, we
determined the effect of NR on the regulation of energy
metabolism, i.e., glycolysis and mitochondrial respiration,
to extend our understanding of alcohol-induced changes in
the metabotypes of macrophages.

Materials and methods

Cell culture and treatment

Murine RAW 264.7 macrophages (ATCC, Manassas, VA,
USA) were cultured in RPMI 1640 media, as we previously
described [23]. Bone marrow-derived macrophages
(BMDMs) were prepared from the tibia and femur of
C57BL/6 J mice and cultured, as previously described [23].
All cells were maintained in 5% CO2 at 37 °C. All animal
procedures were approved by the Institutional Animal Care
and Use Committee at the University of Connecticut.

NR was kindly provided by ChromaDex Corporate
(Irvine, CA, USA). Sirtinol, a SIRT1 inhibitor, was pur-
chased from Cayman Chemical (Ann Arbor, MI, USA); and
resveratrol, a natural SIRT1 activator, was from Sigma-
Aldrich (St. Louis, MO, USA). Cells were treated with 80
mM ethanol (Sigma-Aldrich) for 72 h in the absence or
presence of 1 mM of NR with a daily media change. Sirtinol
and resveratrol stock solution (10 mM) were prepared in
dimethyl sulfoxide and stored at −80 °C until use. Sirtinol
and resveratrol were used for experiments at the final con-
centrations of 15 μM and 10 μM, respectively.

Total RNA isolation and quantitative real-time PCR
(qRT-PCR)

Total RNA was extracted from cells using TRIzol reagent
(ThermoFisher Scientific, Waltham, MA, USA) following the
manufacturer’s protocol. Reverse transcription for cDNA
synthesis and qRT-PCR analysis were performed as previously
described [20, 24] using Bio-Rad CFX96 Real-Time PCR
system (Bio-Rad, Hercules, CA, USA). Primers were designed
according to GenBank database using the Beacon Designer
7 software (PREMIER Biosoft International, Palo Alto, CA,
USA), and primer sequences will be available upon request.

Western blot analysis

Total cell lysate preparation and Western blot analysis were
conducted as described [20, 24]. Cytosolic and nuclear
proteins of cells were isolated using a Nuclear Extraction
Kit (Cayman Chemical) according to the company’s
instruction. Antibodies for p65, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), and TATA-binding protein
(TBP) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Antibodies for pyruvate dehy-
drogenase (PDH) and p-PDH were obtained from Abcam
(Cambridge, MA, USA). SIRT1 and glucose transporter 1
(GLUT1) antibodies were from Cell Signaling Technology
(Danvers, MA, USA). GAPDH, TBP, and REVERT Total
Protein Stain (LI-COR, Lincoln, NE, USA) were used as a
loading control for data normalization in cytosolic, nuclear,
and total protein, respectively. The blots were imaged and
quantified using a Chemidoc XRS+ system (Bio-Rad)
using Image Lab software (Bio-Rad) or an LI-COR Odys-
sey CLx (LI-COR) with LI-COR Image Studio software.

Cellular ROS measurement

Cellular ROS levels were quantified using 2’,7’-dichloro-
fluorescein (DCFH; Sigma-Aldrich, St. Louis, MO, USA)
as we previously described [25].

Enzyme-linked immunosorbent assay (ELISA) for
tumor necrosis factor α (TNFα)

After RAW 264.7 macrophages were treated with 80mM
ethanol in the absence or presence of 1 mM of NR for 72 h, a
conditioned medium was collected to measure secreted TNFα
using a TNF alpha mouse uncoated ELISA kit (eBioscience,
San Diego, CA, USA) following the manufacturer’s protocol.

SIRT1 activity measurement

Non-cell-based SIRT1 activity was determined using a
SIRT1 Direct Fluorescent Screening Assay Kit (Cayman
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Chemical) following the manufacturer’s protocol. For the
measurement of cell-based SIRT1 activity, RAW 264.7
macrophages were treated with 80 mM ethanol in the
absence or presence of 1 mM of NR for 72 h with daily
media change. Then nuclear protein was extracted for
SIRT1 deacetylase activity using a fluorometric activity
assay kit (Abcam, Cambridge, MA, USA). The fluorescence
signal was measured at 340 nm excitation and 460 nm
emission using a BioTek Synergy Mx (BioTek, Winooski,
VT, USA) microplate reader.

Cellular NAD+ measurement

Cellular NAD+ levels were measured as we previously
described [20] and expressed as pmol per 1 ×106 cells.

Mitochondrial DNA copy number

Total DNA was isolated from RAW 264.7 macrophages
treated with 80 mM ethanol in the absence or presence of 1
mM of NR for 72 h using NucleoSpin Tissue
(MACHEREY-NAGEL Inc., Germany). Mitochondrial
DNA copy number was determined as we previously
described using 16S ribosomal RNA (16S) and cytochrome
b (CyB) as mitochondrial genes and hexokinase 2 (Hk2) as a
nuclear gene [26].

Measurement of extracellular lactate levels

Conditioned medium was collected after RAW 264.7
macrophages were treated with 80 mM ethanol in the
absence or presence of 1 mM of NR for 72 h. Extra-
cellular lactate levels were determined using an L-lactate
assay kit (Cayman Chemical) following the manu-
facturer’s protocol.

Energy phenotypes of cells

After RAW 264.7 macrophages were treated with 80 mM
ethanol in the absence or presence of 1 mM of NR for 72
h, cells were subjected to an XFe24 Extracellular Flux
Analyzer (Seahorse Bioscience, North Billerica, MA,
USA) for Mito Stress test and Glycolysis test (Seahorse
Biosciences) as previously described [27]. Once the assay
was finished, total DNA was isolated from each well using
NucleoSpin Tissue (MACHEREY-NAGEL Inc.) to nor-
malize the data.

Hypoxia-inducible factor 1α (HIF-1α) activity assay

After RAW 264.7 macrophages were treated with 80 mM
ethanol in the absence or presence of 1 mM of NR for 72 h,
nuclear proteins of cells were collected to measure HIF1α

activity using an HIF-1 alpha Transcription Factor Assay
Kit (Abcam) following the manufacturer’s protocol.

Statistical analyses

One-way analysis of variance (ANOVA) and Newman-
Keuls post hoc test or unpaired t-test was used to detect
significant differences between groups using GraphPad
Prism 9.0 (GraphPad Software, La Jolla, CA, USA). Data
were considered statistically significant at P < 0.05. Values
are expressed as mean ± SEM.

Results

NR repressed the induction of pro-inflammatory
gene expression by ethanol via the inhibition of the
NFκB pathway in macrophages

The ethanol exposure for 72 h significantly increased
mRNA levels of interleukin (Il)1b, Il6, and Tnf, which were
significantly decreased by NR in RAW 264.7 macrophages
(Fig. 1A). Consistently, NR significantly decreased TNFα
secretion from ethanol-treated macrophages (Fig. 1B).
Cytosolic and nuclear NFκB p65 levels were markedly
increased by ethanol; however, NR completely abolished
the increase in RAW 264.7 macrophages (Fig. 1C). Similar
inhibitory effects of NR on inflammatory gene expression
were observed in BMDMs (Fig. 1D).

NR repressed ethanol-induced ROS accumulation in
macrophages

Alcohol increases ROS accumulation and oxidative stress,
as oxidative free radicals and electrons are generated during
the oxidation of alcohol [2, 6]. Ethanol and its metabolite,
acetaldehyde, significantly increased cellular ROS levels,
but NR completely abolished the increase to a basal level in
RAW 264.7 macrophages (Fig. 2A). Also, mRNA and
protein levels of cytochrome b-245, beta polypeptide
(Cybb), a ROS-producing NADPH oxidase 2 (NOX2), were
increased by ethanol, which was abrogated by NR
(Fig. 2B). Similar inhibitory effects of NR on cellular ROS
levels and Cybb mRNA expression were observed in
BMDMs (Fig. 2C). mRNA levels of nuclear factor E2-
related factor 2 (Nfe212) and other antioxidant genes,
including catalase (Cat), superoxide dismutase 1 (Sod1),
glutathione peroxidase 1 (Gpx1), and Gpx4, were sig-
nificantly increased by ethanol in RAW 264.7 macrophages
(Fig. 2D). NR significantly attenuated the increase. Inter-
estingly, NR decreased Sod2 mRNA level in RAW 264.7
macrophages stimulated with ethanol, although ethanol did
not induce the gene expression.
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Fig. 2 Increases in cellular ROS accumulation and antioxidant
gene expression by ethanol were inhibited by NR in macrophages.
RAW 264.7 macrophages were treated with 80 mM EtOH, 200 μM
MeCHO, and 1 mM NR for 72 h for ROS accumulation (A), Cybb
mRNA and protein expression (B), and antioxidant gene expression

(D). C BMDMs were treated with 80 mM EtOH, 200 μM MeCHO,
and 1 mM NR for 72 h for cellular ROS accumulation and Cybb
expression. C, control. A representative blot image is shown. Mean ±
SEM. Bars without sharing a common letter are significantly different
(P < 0.05).

Fig. 1 NR inhibits ethanol-induced inflammation by inhibiting
NFκB nuclear translocation in macrophages. RAW 264.7 macro-
phages were treated with 1 mM NR and 80 mM EtOH for 72 h for
gene analysis (A), TNFα secretion (B) nuclear translocation of NFκB
p65 (C). GAPDH and TBP were used for the purity of cytoplasmic and

nuclear fractions, respectively. A representative blot image is shown.
D BMDMs were treated with 1 mM NR and 80 mM EtOH for 72 h for
gene analysis. C, control. Mean ± SEM. Bars without sharing a com-
mon letter are significantly different (P < 0.05).
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Ethanol decreased SIRT1 expression and activity,
which was abolished by NR in macrophages

SIRT1 is known to inhibit the production of pro-
inflammatory cytokines and ROS accumulation in macro-
phages [28, 29]. We demonstrated ethanol metabolites, such
as acetaldehyde and acetate, decreased Sirt1 expression in
macrophages [12]. Therefore, we next determined whether
NR can abrogate the repressive effect of ethanol on Sirt1
expression in macrophages. Ethanol decreased Sirt1 mRNA,
and NR attenuated the decrease in RAW 264.7 macrophages
and BMDMs (Fig. 3A). Decreased SIRT1 protein by ethanol
was restored by NR in RAW 264.7 macrophages (Fig. 3B).
In a non-cell-based assay, NR significantly increased SIRT1
activity, indicating a potential direct activation of SIRT1 by
NR (Fig. 3C). In a cell-based SIRT1 activity assay, SIRT1
activity decreased profoundly by ethanol (Fig. 3D). How-
ever, NR abolished the decrease and further elevated SIRT1
activity in RAW 264.7 macrophages.

The contribution of SIRT1 to the anti-inflammatory effect
of NR in macrophages exposed to ethanol was evaluated
using sirtinol, a SIRT1 inhibitor [30, 31], and resveratrol, a
natural SIRT1 activator [31, 32]. It should be noted
that resveratrol also activates AMP-activated protein

kinase, which also leads to SIRT1 activation [33, 34]. In
unstimulated RAW 264.7 macrophages, sirtinol and NR
modestly affected the expression of C-C motif chemokine
ligand 2 (Ccl2), Il1b, and Tnf (Fig. 3E). Ethanol significantly
increased the pro-inflammatory gene expression, which
was further induced by sirtinol in RAW 264.7 macrophages,
but NR markedly attenuated the effect of ethanol and sirti-
nol (Fig. 3E). Resveratrol and NR did not alter the expres-
sion of pro-inflammatory genes in unstimulated RAW 264.7
macrophages (Fig. 3F). However, increased Il1b, Ccl2, and
Tnf mRNA levels by ethanol were significantly abrogated
by NR or resveratrol alone. In the combination of NR
and resveratrol, there was no further reduction in ethanol-
stimulated Ccl2 and Tnf mRNA levels. Only Il1b mRNA
level was decreased by NR and resveratrol in combination to
a greater extent in ethanol-stimulated macrophages.

Ethanol decreased cellular NAD+ level and the
expression of genes involved in the NAD+ salvage
pathway, which were abolished by NR in
macrophages

As SIRT1 requires NAD+ as a cofactor for their activation
[9, 10], we measured cellular NAD+ levels in macrophages.

Fig. 3 NR inhibits ethanol-induced decreases in SIRT1 expression
and activity in macrophages. A RAW 264.7 macrophages and
BMDMs were treated with 1 mM NR and 80 mM EtOH for 72 h for
Sirt1 mRNA measurement. B RAW 264.7 macrophages were treated
as described above for Western blot analysis. A representative blot
image is shown. C Non-cell-based SIRT1 activity. D RAW 264.7

macrophages were treated with NR and EtOH as described above for
cell-based SIRT1 activity. RAW 264.7 macrophages were treated with
80 mM EtOH, 1 mM NR in the presence or absence of 15 μM sirtinol
(E) or 10 μM resveratrol (F) for 72 h for gene analysis. C, control.
Mean ± SEM. Bars without sharing a common letter are significantly
different (P < 0.05).
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Ethanol significantly reduced cellular NAD+ level by
~50%, but the decrease was restored by NR in RAW 264.7
macrophages (Fig. 4A). Alcohol dehydrogenase 1 (Adh1)
and acetaldehyde dehydrogenase 2 (Aldh2) catalyze the
oxidation of ethanol and acetaldehyde by consuming NAD
+, respectively [7, 35], leading to an increase in the con-
version of NAD+ to NADH. Both Adh1 and Aldh2 mRNA
abundance was significantly increased by ethanol, but NR
completely attenuated the increase in RAW 264.7 macro-
phages (Fig. 4B).

Next, we measured the expression of enzymes related to
the production of NAD+ in the macrophages. NR increased
the expression of nicotinamide riboside kinase 1 (Nrk1) in

RAW 264.7 macrophages (Fig. 4C), which plays an essential
role in regulating hepatic NAD+ biosynthesis [36]. NR is
converted to nicotinamide mononucleotide (NMN) by NRK1,
and NMN becomes NAD+ by nicotinamide mononucleotide
adenylyltransferase 1 (NMNAT1) in the nucleus and
NMNAT3 in mitochondria [16]. Nicotinamide phosphor-
ibosyltransferase (NAMPT) is another important enzyme for
NAD+ production, which catalyzes the conversion of nicoti-
namide (NAM) to NMN, which are metabolites of NR in the
NAD+ salvage pathway. While Nrk1 mRNA was not altered
by ethanol, Nmnat1, Nmnat3 and Nampt mRNA levels were
decreased by ethanol, which was abolished by NR in RAW
264.7 macrophages (Fig. 4C) and BMDMs (Fig. 4D).

Fig. 4 NR abrogates ethanol-induced decrease in cellular NAD+

levels and genes involved in the NAD+ salvage pathway in mac-
rophages. RAW 264.7 macrophages were treated with 1 mM NR and
80 mM EtOH for 72 h for cellular NAD+ measurement (A) and gene

analysis (B, C). D BMDMs were treated the same as RAW 264.7
macrophages for gene analysis. C, control. Mean ± SEM. Bars without
sharing a common letter are significantly different (P < 0.05).
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NR attenuated the ethanol-induced glycolytic
capacity of RAW 264.7 macrophages

Evidence suggests that metabolic pathways to generate
energy are closely linked to immune systems, and mac-
rophages can switch metabolic phenotypes depending on
extracellular stimuli [37, 38]. Therefore, we investigated
the potential role of NR in the modulation of glycolysis in
macrophages exposed to ethanol. Glycolysis rates were
not significantly altered by ethanol in RAW 264.7 mac-
rophages (Fig. 5A, B). However, ethanol significantly
increased glycolytic capacity, glycolytic reserve, and
non-glycolytic acidification, all of which were abolished
by NR.

Next, we determined the effect of ethanol and NR on the
expression of genes that regulate glucose entry to cells and
pyruvate to mitochondrial tricarboxylic acid (TCA) cycle.
Hypoxia-induced factor 1α (HIF-1α) regulates the expres-
sion of glucose transporter 1 (GLUT1), which is the primary
cell membrane glucose transporter in macrophages [39].
Hexokinase 1 (HK1) is also vital for glucose entry into
macrophages by phosphorylating glucose to glucose-6-
phosphate. Hif1a, Glut1, and Hk1 mRNA levels were sig-
nificantly induced by ethanol, but NR completely abrogated
the induction in RAW 264.7 macrophages (Fig. 6A). While
ethanol increased GLUT1 protein by ~4-fold, NR inhibited
the increase close to the basal level (Fig. 6B). Consistently,
HIF-1α activity was significantly increased by ethanol but
decreased by NR (Fig. 6C).

Pyruvate, the end-product of glycolysis, enters the
mitochondria and is converted to acetyl-CoA by pyruvate

dehydrogenase (PDH) complex [40]. Phosphorylation of
PDH by PDH kinase (PDK) inhibits the enzyme activity
[41]. Alternatively, pyruvate is reduced to lactate in the
cytosol by lactate dehydrogenase (LDH) by regenerating
NAD+. Therefore, these enzymes determine the metabolic
fate of pyruvate. The mRNA levels of Pdk1 and Ldha
were significantly increased by ethanol, which was abol-
ished by NR (Fig. 6D). PDH phosphorylation, which
decreases the entry of pyruvate to the citric acid cycle,
was increased by ethanol but significantly decreased by
NR (Fig. 6E). Ethanol reduces the cytosolic NAD
+/NADH ratio by consuming NAD+ to metabolize etha-
nol, favoring pyruvate conversion to lactate in the liver
[10]. Extracellular lactate levels were increased by
ethanol but significantly decreased by NR (Fig. 6F). As
pyruvate can be generated from acetaldehyde catalyzed
by pyruvate decarboxylase under NAD+ deficiency con-
dition [42], it is not surprising to observe glycolysis was
not altered while lactate was increased with ethanol
treatment.

NR regulated ethanol-induced mitochondrial
respiration in RAW 264.7 macrophages

We further investigated the effect of ethanol and NR on
mitochondrial respiration in RAW 264.7 macrophages.
Ethanol increased basal respiration, ATP production, and
proton leak while decreasing maximal respiration and spare
respiratory capacity, all of which were abolished by NR
(Fig. 7A, B). Next, we evaluated the effect of ethanol and
NR on the expression of genes important for mitochondrial

Fig. 5 Increased glycolytic capacity and reserve by ethanol was
abrogated by NR in RAW 264.7 macrophages. Cells were treated
with 1 mM NR and 80 mM EtOH for 72 h for glycolysis stress tests

(A, B). C, control. Mean ± SEM. Bars without sharing a common letter
are significantly different (P < 0.05).

Nicotinamide riboside, an NAD+ precursor, attenuates inflammation and. . . 1231



biogenesis. mRNA levels of peroxisome proliferator-
activated receptor γ coactivator 1α (Ppargc1a) and
Ppargc1b, crucial activators of mitochondrial biogenesis
[43, 44], were significantly decreased by ethanol, but NR
attenuated the repression (Fig. 7C). Consistently, the ratios
of mitochondrial to genomic DNA, indicative of mito-
chondrial copy numbers, were significantly decreased by
ethanol but NR abolished the decrease (Fig. 7D).

Discussion

Increased ROS generation by alcohol disrupts redox
homeostasis, which can activate the inflammatory
responses in macrophages [2, 3]. We evaluated the effect
of NR on inflammation and oxidative stress in ethanol-
stimulated macrophages to explore its therapeutic poten-
tial for alcohol-associated inflammatory diseases. In the
present study, we found that NR activates SIRT1 by
inducing its expression with a concomitant increase in
cellular NAD+ levels, consequently inhibiting inflamma-
tion and oxidative stress in macrophages exposed to
ethanol. Importantly, NR abolished ethanol-triggered
changes in glucose metabolism and mitochondrial
respiration by regulating SIRT1 activity, which may
contribute to the anti-inflammatory and antioxidant
properties. As inflammatory macrophages exhibit a
metabolic shift to aerobic glycolysis [45, 46], NR may
counteract the changes in energy phenotypes of macro-
phages when they are activated by ethanol.

Ethanol is oxidized into acetaldehyde by ADH, which is
further converted to acetate by ALDH [7, 35]. NAD+ is
consumed during the reactions by serving as an inter-
mediate electron carrier and reduced to NADH [2, 47]. As
NAD+ is a cofactor of SIRT1 [9, 10], oxidation of ethanol
can diminish SIRT1 activity by depleting cellular NAD+

levels. Indeed, we found that ethanol decreased cellular
NAD+ levels, along with a significant increase in Adh1 and
Aldh2 mRNA levels in macrophages. NR treatment abol-
ished the changes and maintained NAD+ levels in macro-
phages exposed to ethanol. Notably, NR appeared to
increase NAD+ levels not only by providing an NAD+

precursor but increasing the expression of genes involved in
the NAD+ salvage pathway for its conversion to NAD+.
NRKs phosphorylate NR to NMN, which is an intermediate
of NAD+ synthesis [48]. In the NAD+ salvage pathway,
nicotinamide (NAM) is recycled by NAMPT to NMN,
which is converted to NAD+ by NMNATs [16, 49]. In the
present study, ethanol decreased the expression of enzymes
in the NAD+ salvage pathways, while NR attenuated the
decrease. Studies have shown that Nrk1 overexpression
elevates NAD+ levels in the mouse liver [36], and NAMPT
promotes NAD+ production under oxidative stress to
maintain mitochondrial NAD+ levels [50]. Besides, treat-
ment of NMN, which is an intermediate of NAD+ synthesis
by NMNATs, attenuates oxidative stress in aged cere-
bromicrovascular endothelial cells [51]. NMN supple-
mentation also promotes neurovascular rejuvenation
through SIRT1 activation, mitochondrial protection, and
anti-inflammatory effects in aged mice [52] and in the aorta

Fig. 6 NR attenuates changes in the factors that control energy
substrate flow into glycolysis and TCA cycle in RAW 264.7 mac-
rophages. Cells were treated with 1 mM NR and 80 mM EtOH for 72
h for gene analysis. A, DWestern blot for protein measurement (B, E),
HIF-1α activity assay (C), and extracellular lactate contents (F). C,

control. For Western blot analysis, a representative blot image is
shown and densitometry analysis was conducted using total protein for
normalization, which are under blot images. Mean ± SEM. Bars
without sharing a common letter are significantly different (P < 0.05).
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of aged mice [53]. Therefore, NR counteracts decreased
NAD+ levels by ethanol through the induction of Nampt
and Nmnat expression to facilitate its conversion to NAD+

in macrophages.
Increased cellular NAD+ levels by NR and resultant

SIRT1 activation are likely responsible for the anti-
inflammatory effect of NR in ethanol-treated macro-
phages. We recently reported that Sirt1 knockdown elevated
ethanol-induced inflammatory gene expression in macro-
phages [54]. Consistent with our previous study, we found
that ethanol significantly decreased the expression of Sirt1,
which was attenuated by NR. Furthermore, the inhibition of
SIRT1 activity increased pro-inflammatory genes, which
were reduced with SIRT1 activation. Studies have linked a
reduction of NAD+/SIRT1 to NFκB activation. Poly (ADP-
ribose) polymerase-1 (PARP-1), an NAD+-consuming
enzyme, directly interacts with NFκB subunits to form a
stable nuclear complex, potentiating NFκB activity [55, 56].
In addition, inhibition of PARP-1 has been reported to
improve age-related endothelial dysfunction and neurovas-
cular uncoupling by increasing NAD+ availability [57]. Ma
et al. [58] also reported that resveratrol repressed LPS-
induced NFκB activation in alveolar macrophages. Con-
sistently, we found that NR abrogated ethanol-induced

nuclear translocation of NFκB p65. Therefore, NR activates
the SIRT1 pathway in two ways, i.e., induction of gene
expression and provision of NAD+, to exert its anti-
inflammatory effects in ethanol-activated macrophages.

Activated macrophages reprogram energy generation
pathways to increase aerobic glycolysis, also known as the
“Warburg effect”, for effective innate immune responses
[37]. Thus, we explored whether ethanol triggers the shift in
energy metabolism, favoring aerobic glycolysis in macro-
phages. HIF-1α plays a crucial role in the metabolic switch
in macrophages toward aerobic glycolysis [59]. ROS sta-
bilize HIF-1α [60], and TNFα induces HIF-1α expression
through NFκB activation [61, 62], suggesting HIF-1α acti-
vation in the milieu of inflammation and oxidative stress.
Interestingly, HIF-1α mediates metabolic changes and
inflammation triggered by ethanol [63]. In the present study,
ethanol increased the expression and activity of HIF-1α and
its target gene expression, including Glut1 and Hk1;
therefore, one would expect increased glucose entry into
macrophages, increasing glycolysis. However, we found no
changes in glycolysis by ethanol, although ethanol
increased glycolytic capacity, glycolytic reserve, and non-
glycolytic acidification in macrophages. Our results are
consistent with the report by Hoyt et al. [64] that basal

Fig. 7 NR inhibits ethanol-induced alterations in mitochondrial
respiration and copy numbers in RAW 264.7 macrophages. A, B
Cells were treated with 1 mM NR and 80 mM EtOH for 72 h for Mito
Stress tests (A, B), gene analysis (C), and (D) mitochondrial copy

number measurements. Mitochondrial copy numbers were determined
using 16S and CyB as a mitochondrial gene and Hk2 as a nuclear gene.
C, control. Mean ± SEM. Bars without sharing a common letter are
significantly different (P < 0.05).
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glycolysis was not significantly altered despite increased
lactate in the culture medium in J774 macrophages treated
with ethanol for 2 weeks. Ethanol is oxidized to acet-
aldehyde and then to acetate, which can turn into acetyl-
CoA [65]. Some acetaldehydes can become pyruvates by
pyruvate decarboxylase. Pyruvate regulates glycolytic rates
by inhibiting glycolytic enzymes [66], which may explain
no differences in glycolysis with ethanol treatment. Also,
acetyl-CoA can activate PDK to phosphorylate PDH for
inactivation [67], shifting the conversion of pyruvate to
lactate but not to acetyl-CoA. In line with this notion, we
found that ethanol increased pPDH/PDH ratios with con-
comitant increases in Pdk1 and Ldha expression and lactate
concentrations in the cell medium. Interestingly, alcoholics
frequently have increased circulating lactate concentrations
because ethanol metabolism by ADH and ALDH consumes
NAD+, promoting the conversion of pyruvate to lactate
[68]. Also, lactate has been shown to induce the HIF-1α
signaling, which upregulates glycolysis while suppressing
the TCA cycle by inducing PDK1 expression [69–71].
Therefore, ethanol metabolites and NAD+ depletion due to
ethanol metabolism likely have a substantial impact on
cellular energy metabolism possibly via the modulation of
HIF-1α in macrophages. Significant increases in HIF-1α
expression and activity observed in ethanol-treated macro-
phages support this possibility. It should be noted that NR
markedly decreased the expression of Hif1α, and its target
genes, e.g., Glut1, Ldha, and Pdk1, along with a reduction
in extracellular lactate levels in ethanol-stimulated macro-
phages. As SIRT1 deacetylates HIF-1α for its inactivation
[72], NR may inhibit the activity of HIF-1α, not only by
decreasing its expression, but also by de-repressing Sirt1
expression and increasing NAD+ in ethanol-treated mac-
rophages to counteract ethanol-induced metabolic switch in
macrophages.

Respiratory capacity is another crucial component of a
cell’s metabolic capacity along with glycolysis. We found
that ethanol increased basal respiration, ATP production,
and proton leak with no change in basal glycolysis, while it
significantly decreased maximal respiration and spare
respiratory capacity in macrophages. Also, ethanol sig-
nificantly decreased the expression of Ppargc1a and
Ppargc1b, which is in line with a concomitant decrease in
mitochondrial copy numbers. It is surprising to see the
increased basal respiration and ATP production despite
decreased mitochondrial copy numbers in ethanol-treated
macrophages. The increased mitochondrial respiration by
ethanol may be due, at least partly, to the overproduction of
NADH during ethanol metabolism because NADH is used
for ATP generation via mitochondrial oxidative phosphor-
ylation [37, 73]. Considering that mitochondrial free NADH
affects the capacity to regenerate free NADH for energetic
supply [74], future studies are warranted to identify the

redox state of NADH in mitochondria in ethanol-treated
macrophages. It is also presumable that an increased amount
of acetate from ethanol provides more carbon substrates for
TCA cycles, consequently elevating basal respiration and
ATP production in macrophages. Interestingly, we observed
a significant increase in non-glycolytic acidification in
ethanol-treated macrophages. As protons are generated in
the cells from glycolysis (i.e., lactate release) and respiration
(carbonic acid formation from CO2) [75], increased non-
glycolytic acidification by ethanol further supports the pos-
sible promotion of basal respiration and ATP production by
ethanol, even when mitochondrial biogenesis is likely
to reduce in ethanol-treated macrophages. NR, by increasing
NAD+ production as its precursor, is likely to negate an
ethanol-induced reduction in NAD+/NADH ratios, attenu-
ating the effects of ethanol on respiratory parameters,
including basal respiration, ATP production and proton leak.
SIRT1 deacetylates PGC-1α in a NAD-dependent manner to
control mitochondrial biogenesis in hepatocytes [76], and
PGC-1β is known to inhibit pro-inflammatory cytokine
production and primes macrophages for alternative activa-
tion [77]. Therefore, the effects of NR on preventing meta-
bolic reprogramming may be related to its positive role in
SIRT1 activation as well as the induction of Ppargc1a and
Ppargc1b in ethanol-treated macrophages.

Taken together, the present study demonstrates that NR
exerts anti-inflammatory and antioxidant effects in ethanol-
stimulated macrophages by inhibiting nuclear translocation
of NFκB and reducing cellular ROS accumulation. Notably,
the anti-inflammatory and antioxidant effects of NR in
macrophages exposed to ethanol are likely related to its
activation of SIRT1 by de-repressing SIRT1 expression and
providing its activator, NAD+. Furthermore, SIRT1 acti-
vation and normalization of ethanol-induced changes in
NAD+/NADH ratios are presumed to counteract the chan-
ges in macrophages’ energy phenotypes exposed to ethanol.
In vivo studies are warranted to confirm our in vitro find-
ings. Nonetheless, the present study suggests the potential
of NR as a therapeutic agent for alcohol-related inflamma-
tory conditions.
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